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» 11.1 Fundamental Concepts

» 11.2 High-Frequency Models of Transistors

» 11.3 Analysis Procedure

» 11.4 Frequency Response of CE and CS Stages
» 11.5 Frequency Response of CB and CG Stages

» 11.6 Frequency Response of Followers

» 11.7 Frequency Response of Cascode Stage

» 11.8 Frequency Response of Differential Pairs
» 11.9 Additional Examples
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Fundamental High=Frequency Frequency
Concepts Models of Transistors Response of Circuits
® Bode's Rules r:> * Bipolar Model |:> ¢ CE/CS Stages
* Association of Poles * MOS Model ¢ CB/CG Stages
with Nodes * Transit Frequency * Followers
¢ Miller's Theorem * Cascode Stage
¢ Differential Pair
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» At high frequency, capacitive effects come into play. C,
represents the base charge, whereas C,and Cj are the

junction capacitances.

CH 11 Frequency Response
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» Since an integrated bipolar circuit is fabricated on top of a
substrate, another junction capacitance exists between the
collector and substrate, namely Cs.
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» For a MOS, there exist oxide capacitance from gate to
channel, junction capacitances from source/drain to
substrate, and overlap capacitance from gate to

source/drain.
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» The gate oxide capacitance is often partitioned between
source and drain. In saturation, C, ~ C,,,, and C; ~ 0. They

are in parallel with the overlap capacitance to form C;5and
Cop-
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» As frequency of operation increases, the gain of amplifier decreases.
. This chapter analyzes this problem.
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(a) (b)

» Natural human voice spans a frequency range from 20Hz to 20KHz,
however conventional telephone system passes frequencies from
400Hz to 3.5KHz.

» Therefore phone conversation differs from face-to-face conversation.
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Path traveled by the human voice to the voice recorder

[ ot }_{ A J_,[ cocorder }

Path traveled by the human voice to the human ear
[ Mouth J —>[ Air J —> [ Ear J
\ [ Skull J /

» Since the paths are different, the results will also be different.
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| High Bandwidth | | Low Bandwidth |

» Video signals without sufficient bandwidth become fuzzy as they fail
to abruptly change the contrast of pictures from complete white into

complete black.
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» In this simple example, as frequency increases the impedance of C;

decreases and

» the voltage divider consists of C, and R, attenuates V,, to a greater

extent at the output.
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» The capacitive load, C,, is the culprit for gain roll-off since at high

frequency, it will “steal” away some signal current and shunt it to ground.
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» At low frequency, the capacitor is effectively open and the gain is flat.

» As frequency increases, the capacitor tends to a short and the gain starts
to decrease.

» Aspecial frequency is ®=1/(R,C, ), where the gain drops by 3dB.
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» This metric quantifies a circuit’s gain, bandwidth, and power dissipation.

» In the bipolar case, low temperature, supply, and load capacitance mark a
superior figure of merit.
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» The relationship is such that as R,C, increases, the bandwidth drops
and the step response becomes s/ower.
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» When we hit a zero, o,;, the Bode magnitude rises with a slope of
+20dB/dec.

» When we hit a pole, ,;, the Bode magnitude falls with a slope of
-20dB/dec
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» The circuit only has one pole (no zero) at 1/(R,C, ), so the slope drops

from O to -20dB/dec as we pass ;.
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» The pole of a circuit is computed by finding the effective resistance
and capacitance from a node to GROUND.

» The circuit above creates a problem since neither terminal of C is
grounded.
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» If A, is the gain from node 1 to 2, then a floating impedance Z_can

be converted to two grounded impedances Z, and Z,.
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» With Miller’s theorem, we can separate the floating capacitor.

» However, the input capacitor is larger than the original floating
capacitor.

» We call this Miller multiplication.
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» The voltage division between a resistor and a capacitor can be

configured such that the gain at low frequency is reduced.
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» In order to successfully pass audio band frequencies (20 Hz-20 KHZz),

large input and output capacitances are needed.
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» Capacitive coupling, also known as AC coupling, passes AC signals
from Y to X while blocking DC contents.

» This technique allows independent bias conditions between stages.
Direct coupling does not.
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» Inorder to increase the midband gain, a capacitor C, is placed in parallel with R..

» The pole frequency must be well below the lowest signal frequency to avoid the
effect of degeneration.
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» As with CE and CS stages, the use of capacitive coupling leads to
low-frequency roll-off in CB and CG stages (although a CB stage is

shown above, a CG stage is similar).
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