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| v Ju Fundamentals of Solar Cell

(a) (b) (c)

Fig. 1. (a) Energy band representations of intrinsic semiconductor, (b) extrinsic semi-
conductor with donors and (c¢) extrinsic semiconductor with acceptors.
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Intrinsic Semiconductor

Elop
n= j (density of state) X (probability that an electron state is occupied)dE
0

3/2
n=2(27rm;,kT) exp(_EC E,,)z Ncexp(—EC EF)

a kT kT
E,—E, E,
np=NN.e * =N N e = ’71'2
np=N,Ne™ " =NNe*" =n]
E.+E, kI' N
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| irw Extrinsic Semiconductor
- N

p = n:/Np, E.—E =kTIn—=
ND
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Drift Current » T
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| ¥ Ju J=J,+J,=nqm, +pgp,)E=ockE

Diffusion Current dn
F=-D,—
"dx
Electric Field
A A
n r /
Electron Flow HoleFlow
(—
Current Current
_—> —
. . Current
X " b "
(a) (b) Drift of electrons and holes in a semiconductor.
(a) Diffusion of electrons and (b) holes.
dn - dp
J =qD — J,=—qD,
! " dx " dx
dn dp

J,=nqu,E+qD,— J,=pqu,E—qD, .
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| AP g Optical Absorption and Recombination in Semiconductor
¢ hc 1.2398
Alum)=—=—= A
v hv  hv(eV)

flux F, “” "

Optical absorption process in semiconductor.

number of photons absorbed within a depth of x and x + Ax
F(x+Ax)— F(x)=—aF(x)Ax

F(O)=(1—R)F,

» F(x)=(—-R)Fe ™
R is the reflectivity of the surface
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Absorption coefficients are approximately expressed as

for direct gap semiconductor ‘ A*(hy— Eg )'/3

for indirect gap semiconductor —

"""" *(hy — g T Ep) A**(hy— E Ep)
E, AT “E /kT
e —1 |—e 7

E is the phonon energy associated at the absorption

Generally, the absorption coefficient of an indirect gap semiconductor is
much smaller than that of direct gap semiconductor because the absorption
or the emission of phonon is involved in accompanying a change in
momentum of electrons at the absorption of photons

By: Dr. Jabbari ”
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A J Recombination in Semiconductor

E, E,
(a) (b) (c)

Fig. 6. Recombination processes in semiconductors: (a) direct recombination, (b) indirect
recombination, and (¢) Auger recombination.

Direct recombination
is dominates in direct band gap semiconductors. This process is an inverse of absorption.

Under thermal
equilibrium :BnnO Pno
conditions
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In the case of low-injection level

¥ S
U= Bnp— Bnnopno — lB(nnO T An)(pno T Ap)_ ’Bnnopno
A A
= BnnOAp = p — _p
l/annO Tp is called the minority carrier (hole) lifetime

Next trap states near the midgap (Fig. 6(b))

_4r

]
Tp \sz
v,o N

the capture cross section of the hole trap
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In Auger recombination (Fig. 6(c)), one electron gives up its extra energy to another electron
in the conduction band or the valence band during the recombination, resulting in the

excitation of an electron to a higher energy level.
The excited electron will giv is excess energy as heat w
to the band edge

n the excited electron relaxes

Because the Auger process involves three particles,

U=An’p or U=Apn N

A is the Auger constant which strongly depends on temperature £

Because a semiconductor is abruptly terminated, the disruption of the periodic potential
function results in the energy states within the energy band gap at the surface

U=S(p.—p
3/ (ls an)

surface recombination velocity p, 1s the hole concentration at the surface

33
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| ¥ J When an n-type semiconductor is irradiated uniformly by the light to create excess
carriers, the gradient of hole concentration yields a diffusion current, which is equal
to the surface recombination current as shown in the following equation

4Py
dx

qu qus qu(ps_pnO)

x=0

Continuity Equation

an, J (A T, (x+dx)A
'—A([X = -
Jt —q —9q

+(G, — R,)Adx

Using the Taylor series

on, 19J
P — - n + (Gn _ Rn) Area: A
Jat  q ox B
op, _ 194
—=——=+(G,—R)
C)t q d)C o 34
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ar g | Using the drift current and the diffusion current

n VE on o’n, n,—n
P — 1ty =t E—L+ D, L+ G, — 22
ot 0x 0x 0x T,
and
op, OF ap, 0’ p, P, = Pa
,_=_pnlu“p,__lu’pE . +Dp . 2 +Gp_ -
or 0Xx 0Xx 0X T

P

Photoconductive Effect

hv

O=nq, t P g, i
v |
v % o’
0= (ntAmgu, +(p+Ap)gu, =0 +Ac
R 7

By. Dr. Jabbari Schematic diagram of photoconductor. ¥

Ohmic contacts
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| ¥ J In the steady state the generation rate =the recombination rate
the continuity equations for electrons and holes are expressed as
an An _
a_zc__: Ao =qG(p,7, +p1,7,)
[ T, . . .
‘ The photoconductive gain i1s given by

ap Ap

—=G—-—""=0

ot Tp = T, n Tp
[, 1,

where 7, and 7, are the transit time of an electron and a hole between two
Ohmic contacts, respectively. Usually, Ao/o is a measure of how effectively
the photogenerated electron—hole pairs are collected at the external circuit.

BASIC PRINCIPLES OF p—n JUNCTION SOLAR CELL
Just for review

Hole Acceptor EICC/"O" D7nor
_L_o_*_ﬁ_e__v_ +Y++++ -P:.+++
o OO o o L] II. » .
R it e e i ek O diik
A D _ — et 2 5% e 5 P ++‘0~.-k-i.- +a.+‘i--h+.
— ln ERAE I NN, NI 2% L4 Lrw s
([ ’/Ib T e BR O o8 TR iSWeT B ++.++o+5+++.++
I [ E
..—.—.—.—.—.—.—.—E.
7777777777777 Ep
————————————— Ep 36
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| ¥ J Depletion Region
(lzqﬁ q , )
2 =ENA (—x,=x<0)
and
d* q
dx‘f - _EIND O<x=x,)
A
Np
-
N (a)

-Em

(b)

Em = qND/S xn - ([NA/&‘ A

p
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Solar Cells-§ 9 (wogo 39 0 g elw

Depletion region

«—>
T e i b Bt
A i L B R B T2
(o o 2ol el et @
B o2 % sl &+ 2+ 0t 4«
e T T e ek | Pt T
o Drift
Oy
wiffusion qVy
E.
—————————————————————————— Er
Diffusiom ®
Drifl‘\ - E
d gN ,(x+x,) rhvpe
p=_4% __9 P (—x, =x<0)
dx e P
and
d gN,(x—x
g=-9¢__aNp(x—x,) O<x=ux,)
dx
X ) 2]
g gN,x;,  gN, x> 1
V, =—'[ Edx = 474 P 47t =—FE,w
L 2e 2e 2
8
where N,>>N,
2e( 1 |
w= 5 +N v, we |26y
= b
q A D gN,
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| ¥ Jw Ideal Current-Voltage Characteristics under Dark
S ) thermal equilibrium
S b _ qVy /KT
,,,,,,,,,,,,,, I qVr _ nn() i ’lp() e
R R = i :
T e forward bias V.
* _ q(V,=Vp)IKT
\ n,=n,e
____________ E‘IWR In the case of the low-injection condition (n, = n,).
&N R _ qVi/kT
) , n p n poe

(b)

. 13. Energy band diagram under (a) forward bias and (b) reverse bias.

In the n-layer, the steady state continuity equation 1s

avp =
— — kT P
Pn= Pno = pn()(e l) €

D dzpn . pn —pnO — 0

P
P dx T,

38
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| ap gu | Diffusion current density

in n-side at x =x, » J,=—qD, dp,

— qupnO (quF/kT _ l)

dx X=X Lp
in p-side at x = —x, J =4D, dn,, _ 4D, P po (1T 1)
dx | __ L,

———

gD, Py n qgD,n,

J=J,+J,= (e —1)=J (e —1)
n p
L, I
_ quPn() + ann’p() — ql)pnz;Z + (ID,,n,'z
! L, L L,N, LN,

When a reverse bias voltage V, _ —qVp!kT
) = (VT )
By: Dr. Jabbari
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(" — qV InkT _
where n is called the ideality factor. In the case of the ideal p—n junction,
when the diffusion current dominates, » = 1 and when the recombination
current dominates, n = 2, that is, n has a value between | and 2.
Photovoltaic Properties
I
(—
- =S F% % | | o> N N
o] — g it
L —0 . e ) A F hy —>»
N g S R ﬁ
—> —>_ X% s -
p e 5 4 \ q \ E,
?—)(—)0 _
—
L, W L, I
(a) (b)

By: Dr. Jabbari

Fig. 15. Energy band diagrams of illuminated p—n junction in (a) the short-circuited and
(b) open-circuited current.
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16. Current—voltage characteristics of p—n junction unde

vV
FF - m [m

VOC ISC

The photovoltaic parameters are evaluated under standard test
conditions: the air mass (AM) 1.5 spectrum with an incident
power density of 1000W/m2 and a temperature of 25C. In order
to improve the efficiency, it is necessary to maximize all the three

photovoltaic parameters, such as VOC, ISC and FF

By: Dr. Jabbari ;

| = [()(qu/nkT _ ]) =7

sct

The fill factor FF of the solar cell 1s defined as

Vm [m V 5 ] FF

— — oc™ SC
F, Fi
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| A J Output Parameters of p—n Junction Solar Cell
1-Short-Circuit Current

Space
. Charge
Emitter Region Base .. .
: low-injection
hv —> p g(—) > n
— > '
E L, L/’
i
—QaX
G=aF(l—R)e = : ’
; : >
0 X; W d '

Under steady state conditions in the emitter

0 (n,—n,,) _on,—n
L taF(1-Rye ™ ——L—2=0
0X Th

it 1s assumed that n,— Ny, = 0at x= X;.

n
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Considering the surface recombination velocity Sn of the excess

A electron at the front surface
an,

Under these boundary conditions

a(n, —n,)|

J,=qD, ™
,\'=.\'j ~
S L
L n—n +aL”
«
=qF(1—R)( - );’ 5 ”x "
a — . : :
n “nn ginh—- + cosh—-
B n n _n
' S L A
—n=n cosh—L +sinh—L
—J aLn + 5 Z n n >€_a"'j
¥ X
=171 ginh —L + cosh—L
\ n n n ) _
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| ¥ J Similarly, the continuity equation in the base
2 I

Dp 0 ([)n : [)n()) +aF(l - R)e—ax _ Pn — Pno =
X Tp

boundary conditions p, — p,, =0 atx=x; +w and
WPy _

D
pch

—=S,(Py = Puwo) At x=d

a —_ *
Jp:_qu (I)naxl)nO)I
x=x;+w

S L
” pcoshi+sinhi

oL, D, L L
= gF(1-R———2—| {al,, — 2
(el,)”—1 2P ginh-2 + cosh-%-

p p P )

The hole current density

S L
aL . pp
4 D
4 p —ad _a( ,\‘j+w)
- > e e
S,L, d d
PP ginh— + cosh—
P p P ) i a4
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| vy | The photocurrent density in the space charge region

alx.+w)

J,=qF(1—R)e “7 —e “™)
total short-circuit current density J,

/\max wavelength corresponding to the absorption edge of the semiconductor.

[ U, +7,+7,dr

/A is around 0.3 pm

min

to calculate the upper limit For simplicity, we assume

d=o, w=0,§,=5,=0 and L,=L,=L

L l aL—l\‘.

J,+J,+J,=qF(1—R) aL—e L
(al)*—1 X
cosh—

A qF(1—R) _, In(al)
The maximum value * (\,_ A X =L——
sosh ¥ j max )
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| ar g | 1T the diffusion length is long enough. that is, al>>1
’\max
J,+J +Jyis gF(1—R). wemy J,,=q | F(1=R)dA

A

50 —

40 —

Jsc(mA/cm?2)
5)
|

10 — AMI1.5

0 | 2
Eg(eV)

A pax(pem) = 1.2398/E (eV)
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i: e—a .i
T 60

e Open-Circuit Voltage

V.= nk—Tln S +1 _ l |[D, . 1 |D, | -gnr
q ‘]0 ‘,O _ quNC + €
N, \N7, N T

AML.5

Eg (eV)
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| ¥ Jl The upper limit of the open-circuit voltage can be approximately expressed as
E [ ¥ kT T, kT Q)

~ 8 0 0 0
V0C= — 1 —_— ]n ln Inc
q I, ) q T() q 4w

using the thermodynamic engine with Carnot efficiency, where 7|, is the
solar cell temperature, 7 the temperature of the sun, and €}, . the solid angle
which the solar cell receive the incident irradiation from the sun

Fill Factor and Conversion Efficiency

Approximately expressed by
Toe (0 72+ 4V0c )
A
FF =
= 1+ CI‘/OC
kT

20 (—

[deal conversion efficiency

n (%)

10 — AMIL.5

| |

0 1 2 )
Eg(eV)L
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Energy Losses of Ideal Solar Cell

The photons with the energy less than the band gap energy (hf<Eg) are
several reasons not absorbed in the semiconductor even if the thickness is sufficiently thick

for the limited 7

efficiency of an Second is the excess energy loss, which occurs because/the energy of

ideal p—n the photon above t}'\e band gap energy is wasted in the form of heat

junction — / /

solar cell third reason for the : a p—n junction is incapablg of fully utilizing the
maximum voltage

fill factor is smaller than uhity. When the’'maximum power is extracted
from the solar cell with'the optimal load, the operation voltage is
smaller than the op —circu/it volta

/

Black’Body Radiation at 6000K

|

Therefore, only the energy shown by
the shadow in Fig. 21 can be
converted into electrical energy.

BT e L

% % 2

Amin Amax 49
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Energy Distribution (kW/m? pum)
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Energy Losses of Real Solar Cell
is usually lower than that of the ideal solar cell

_ antireflection coating or texturing the surface

1- reflection loss | To decrease
the reflectivity

The metal grid on the front surface

The material parameters are the minority
carrier lifetime and the mobility of carriers.

v'some losses occur when the diffusion length
The. three is not sufficiently long. If deep levels or other
major T lattice defects such as dislocations or grain
factors boundary are present in the material, the

2- The recombination loss diffusion Iength is reduced.
1 v High-impurity doping also reduces the

diffusion length.
v'The open-circuit voltage is degraded because

3- The series and of the increase of the saturation current by the
shunt resistance lattice defects.
—losses. v'The large surface recombination at the front
and back surface degrades the open-circuit
voltage and the short-circuit current 0

By: Dr. Jabbari
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¥ Jw ’ The origin of the series resistance is the resistance of semiconductor

bulk, contact, interconnection, etc

The shunt resistance is caused by lattice defects and leakage current through the
edge of the solar cell

When the thickness of the solar cell is not sufficiently thick, some portions of the photons
are transmitted through the solar cell material, causing the loss

It is difficult to obtain an ideal material quality under
limited procedure production costs.

In order to increase the efficiency toward
the ideal one, it is necessary to reduce the
sum to losses.

By: Dr. Jabbari -
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| Y J ’ BASIC PRINCIPLES OF SOLAR CELL USING NANOCRYSTALLINE MATERIALS

Fundamental Properties of Nanocrystalline Materials

(a) when the number of atoms is around 1e3 —1e5, the bulk lattice
structure exists but the electric properties are modified from the bulk and
(b) when the number of atoms is 30—1e3, the bulk lattice structure is not
found and the properties are entirely molecules.

When the dimension of the semiconductor crystallite is smaller than the

de Broglie wavelength of charge carriers of the semiconductor, the quantum
size effect occurs. Therefore, the quantum size effects are dependent on the
effective mass of the charge carriers.

1d

Lp ————————————— LUMO

Is

Is
Ip —— HOMO

1d

<>

Diameter

(a) (b) (c)

(a) Electronic states for bulk semiconductor, (b) small crystallite, and (¢) molecule. 52
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| ¥ Jb ’ An analytical approximation for the lowest excited 1 s state is given by
2 2
. h™ [ 1 I 1.8 g~
E*~E +—| —+— |- —L
§r-\m, m, er

where r 1s the crystal radius, m, an effective mass of electrons

The second term shifts £* to higher energy as 2.
third term shifts £* to lower energy as r~!

Finally, with the decrease of crystal size the transition energy approaches the highest

occupied molecular — lowest unoccupied molecular (HOMO—-LUMO) levels
which are observed in molecule

the surface effects — which are usually neglected in the bulk semiconductor
become notable with the decrease of crystal size because the number of
surface atoms becomes comparable to those in the crystallite.
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Small
Crystallite
Electrolyte Semiconductor Electrolyte Electrolyte Electrolyte

(a) (b)

Fig. 23. Energy band diagrams of (a) large gnd (b) small semiconductor particles in
electrolyte.

When the radius of the crystallite is smaller than the thickness of the space charge layer, the
potential drop in the semiconductor becomes/limited.

Under these conditions, all the donors are ionized and there are electrons left in the conduction
band of the semiconductor. The potential drop between the center and the surface of the
crystallite is given by

9

KT ( r u - potential drop is very small compared to the
A¢ = band gap, and sometimes negligible
6(/ Ld when the crystallite size is small. When the
' donor concentration is very high, the potential
) drop cannot be ignored even in the case of54
By: Dr. Jabbari Ld = \/SkT/Z(/‘ND small crystallite.
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Light-Induced Charge Separation

In the case of small crystallite, the band bending is very small.
Therefore, the light-induced electrons diffuse toward the surface or
recombine with holes or are captured by the trap levels.

The average transit time from the interior of the semiconductor
particle to the surface is approximately expressed as

~

I

7 D 1s the diffusion coefficient of electron
2

T,;=

Usually when the crystal size is small, the charge carriers can reach the
surface before the recombination because 7,is shorter than the relaxation time.
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wo |
2 E,
the light-induced electrons
are transferred from crystallite B to .
rystallite A
crystallite L > g o
B B
A A
— —e £
the photo generated electrons recombine
with holes at the valence band. Therefore, hy | —p ®)
the ability of light induced charge v g
separation is governed by the band ér :
position of the materials N N

Fig. 24. Schematic illustrations of energy-level alignment for two cases. It is assumed
that the band gap of A is larger than that of B and the photons are absorbed in B. (a) Charge
carrier separation takes place, (b) the charge separation does not occur.
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Cra

The light-induced charge separation takes place not only at semiconductor/ semiconductor
interface, but also at semiconductor/adsorbed molecule interface, organic material/organic
material interface, semiconductor/ quantum dot interface, etc

The quantum yield of charge carrier injection is the fraction of the
light-induced electrons into those injected in the conduction band of another
material. The charge carrier injection is the competition with the radiative
or nonradiative recombination. The quantum yield is given by

k nj

b =———
- kinj +77!

= owlgs 09 3b

where k;; and 7 are the injection rate and the carrier lifetime, respectively

[18]. To achieve a high-quantum yield close to unity, k, . should be 100 times

> ™Mnj

higher than 7! with reducing trap levels, interface levels, crystal size, etc.
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Collection of Light-Induced Charge Carriers

There are several losses during the transport of carriers.

1- When the conductivity of the nanocrystalline material is not high, there is
an energy loss during the transport of electrons in the high-resistive materials to
the electrode.

2- The back reaction of separated charge carriers toward the fundamental
state also reduces the external quantum efficiency.

3- The recombination with the localized energy levels created by defects or
impurities causes current leakage.
Therefore, it is necessary to reduce these losses for high energy conversion
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Conductor

Hole conducting material

y'd g §

Glass substrate \ ]\ Glass substrate
\ 1

Transparent conducting layer
(a) (b)

Conductor

a1
Glass substrate 7‘ Glass substrate
[
Transparent conducting layer
(c) (d)

Fig. 25. (a—d) Schematic cross-sectional views of examples for solar cells based on
nanocrystalline materials. A and B denote the materials A and B, respectively, shown in
Fig. 24(a).
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A

Fig. 26. Energy band profile of solar cell based on nanocrystalline materials.
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