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Mathematica
Foundations

Linear algebra is the natural mathematical language of quantum mechanics

Hilbert spaces for vectors and operators

The Dirac notation

A Hermitian (self-adjoint) operator produces a basis set within a Hilbert space

Observables such as energy or momentum
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S g yo In Q.M.:

Act of observing represented by operators

Particle or system represented by vectors

Exam: Y ( wave funtion) or | > (Ket) represents particle moving along 7 axis unlike
Movement P . Let P be an operator that measures momentum
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Exam: Alternate statement (Average momentum)
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Wave functions live in Hilbert space
Hilbert space = vector space + Inner product
There exists basis vectors
RE
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Usually basis set g "ﬁ: vas H‘L} | ﬁ.}} chosen to be eigen vectors
of observable likc
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s Other type of operator : unitary
converts one basis Set into another .
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[+ Operators Also form a vector

space (and Hilbert Space)
J1Operators or Wae functions can

carry the dynamics of system
J-Representations Schrodinger
,Heisenberg ,Interaction

By: Dr. Jabbari
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g g0 set F(real or complex )with operator + f, fl ) f2 in F
vector space consists —

Scalar multiplication (SM) over the field of numbers &/

— a, B,y in/N
Cl“”*u?{';_ >fi+frisin F and ef isin F
Associative: (fy+f2) +fa=f+ (f2+f2)
Commutative: fit+fo=fa+fi
Zero: There exists a zero vector O such that O +f=f
Negatives: For every f in F, there exists (—f) in F such that f4+(—f) =0
SM Associative: (B =w(pf)

SM Distributive: alfi + ) =wfi + of2
SM Distributive: (o + B)f = of + ff
SM Unit: If=f

By: Dr. Jabbari )
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Example:

If F represents the set of real functions but the number field consists
of complex numbers
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Objects such as ¢, f(x) (where c, is complex) cannot be in the original vector
space because the function g(x)=1f(x) has complex values.

cannot be vector SEaCE

Inner Product, Norm, and Metric

An inner product (®*/®) in a (real or complex) vector space F is a scalar valued function that
maps Fx F— C (where Cis the set of complex numbers) with the properties

1. (flg) = (g|f)" with f, ¢ elements in F and where “*’ denotes complex conjugate.

2. {of +Bglh)y=a*(fl)+B"g|h) and (h|af + Bg) =alh | f) + B(h | g) wheref, g, h
are elements of F and «, B are elements in the complex number field %.

3. {f|f) = 0 for all vectors f. The inner product can be zero (f| f} =0 if and only
if f=0 (except at possibly a few points for functions).

By: Dr. Jabbari
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A metric d( f, g) is a relation between two elements f and g of a set F such that

1. d(f,g)=0and d =0 only when f= g (except at possibly a tew points for piecewise
continuous functions C,la,bl). Recall that two functions are equal only when
flx) =g(x) for all “x” in the domain of definition.

3. d(f, @) <d(f, h) +d(h, g) where I is any third element of F.

The metric measures the distance between two elements of the space

df.9)=(f-glf-g"

10
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2 = XoX + 12lf

[nner product (nl|.n)=rn-rn=mxnxn + y1l2

Norm [71] = {F1 | Fl}m: (3 +13)"° f

Metric d(ri,r2) = ||Fl - || = [f-_f:l —12) - (1 —_f:z}]m= \ff.:fl —x2)* + (1 —1:'2]2

inner product for functions

[nner product , 12 . 2
Norm Ifeol = (F1172 = [ 2 dx fo*fe)| = [ [ dx ifoR]

11
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1/2 1/2

=12 [ aea] <[ [ aves] =] [ ac] =2
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1/2

Kets, Bras, and Brackets for Euclidean Space

3D eucwr: (X, i, 2)

X< |1) y<|2) z<|3) En

Bxample: % — 3% — 47 + 102
v) = 3[1) — 4[2) + 10/3)

By: Dr. Jabbari
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(1] =3 2)

- V)
) = 3/1) — 4]2) +10]3) 2o =—4 :

(37 = 10. §<1|
L

Avy=3 |1}

Projection of v = 3x + 51 onto [1), [2).
Combination of projection operators and vectors as

- Rlready l{muu (117 = (1)

<}N"l “bra” + “ket” gives the “braket” inner product

{ﬂ:r|'r::} = ()0 =W 7T

|'} {. | —to be more complicated compound objects

13
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Exwmple G- 3% e¢ g3
D =4l vy = £ (3%+4G-53 ) = 5
<D = L1 1S = < %31:}-}‘1']1}-*513}%
=300 +34(25-5<1{3> =3
+ mention Dunl Vecfor Space  (mew later)
- {wl = Lunear @i\em_{-nf‘ mApS V—g
o f_ ¢ gy = f C; <wlvg)

* For every Vecdor (WS Hara 1s An arﬁ_m&qr
<“-‘\.5 that s
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A, Basis, Completeness, and Closure for Euclidean Space
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im”‘ basis set must be orthonormal and complete

1 m=n
0 m=£n

Kronecker delta function

'ﬁll}:g = <4{3>._._ —r :<'ﬂl'n> 4oL

m#F N

A linear combination of ““N”’ orthonormal vectors B = {|1}.]2), ...,|N}} has the form

can be complex numbers

15
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" closure (i.e., completeness) relation
O § 90

(m | vy = (m| Y Ciliy =Y Ci(m|i) =) Cibim=Cun
=1 =1

1=1

Ci = (i|v)

o) = 220 Gilly = 20, (i o))

o

[0) = le (i1v) or Iv=(Z|’ ")"" » ZH:H}{J'

1=1

Example 4.2.1
The completeness relation for * using (w| = w- is

1= 1)1+ 2@+ 3)(3] so 1=3F +§j +5%

Note that the unit vectors are written next to each other without an operator between
them.

By: Dr. Jabbari

16



Optoelectronic 1

The Euclidean Dual Vector Space

. .
oo tls 65

o 3T ol&iats
—d [§,)

Bra projects an arbitrary vector onto the vector

linear operator (®/ maps a vector space V into the complex numbers % (i.c., (w|: V — %).

]

Euclidean vector ,the corresponding bra is the operator |7} T — {E?| —_

(] < | oras |w) ™= (w|
+ ““dual vector space V*

Example 4.2.2 V ={lv)}and V* = { (w]}

Find the vector dual to |2) = 3.

The dual vector is (2| = §- which is an operator that projects an arbitrary vector ¢ onto .

We can explicitly represent the result of the projection as the y-component of o:

Lo B |

?:'L'?

Y

2]v) =7

Example 4.2.3
Some relations can be demonstrated for © = |v) = a|1) + b|2) where { |1}, |2)} spans R2

1. (vl = ) = [a[1) + bI2)] "= [|1)"a™ + [2)7bT] = a* (1] + b*(2|
2. (0| 1) =[a"(1|+b*(2])]1) =a* and (1|0) = (1|[a|]1) +b|2)] =a

3. (1|vy=a=@@)" = |1)" Notethat |1 ={1]|v)=({v| 1" 17
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s The adjoint reverses the order of operators
[

(v|L1La|w) "= (w|Ly LT |v)

Exam: Assume [|7y - j =1, 2 3]

norm

3 (3 3 3 3
I5)= 0 1v) = (Zm—m) (Z 0j f) > i} Zﬂ i) =D tilojvli) = D vivili | 1)

=1 JI_ =1 = i, ‘||='I E,_,|='I

unit vectors

3

loll*= ") " vfvs; ;= Zu v; = Zw

i, j=1 1=1

the magnitude of the complex number

18
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A Hilbert space consists of a vector space of functions

with a defined inner product
|

Hilbert Space of Functions with Discrete Basis Vectors

Functions ina set F={¢o.d1.¢2. -...¢u} gre linearly independent if for complex constants
n
> cii(x) =0
=0
can only be true when all of the complex constants are zero c; =10

Functions in the set F = {¢o. ¢1.¢2, ....¢,} are orthonormal if  (&i| &;) = &;

A linearly independent set of functions F is complete if every function f(x) in the space
can be written as

n [

f) =) cpix) or |f)=> ciles

i=0 i=0

By: Dr. Jabbari
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orthonormal basis vectors) to span the function

space and basis for a Hilbert space

D

Udo).l1). ..} mmm 0y, 1), .. )

o0
Then we can write each function to form  |f Z cili)
=

where the components of the vector can be find as follow:

(f |f) (‘f’f | f I|Z[f|’ Z ’i(f | 1") = Zﬂi'ﬁij = Cj
—0 i—0

The projection of the function on the it axis produces the inner product
between the two complex functions

20

1
6| ) = f dx ¢ (V)
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Shdg |f) = ;rssli} » ) = Zn:ﬁh = i zﬂ: i | f) = (g i) {”) f)

The closure relation ensures completeness of the basis set and vice versa

The bra for functions can be written in terms of an operator as

(f| = f dx f*(x)o

The Continuous Basis Set of Functions

(¢x | dx) = 8(k — K) (flg)= f ax f*()g(x) f)= f "k cule

orthonormality F has an integral expansion

inner product

21
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flx)= [ dkck ¢ul(x)
i
|#2)
Co——————— I|f} |¢'4.Q}
|
|
I Csg |f)
o
I;H 2%
Iy
c j
y Cs.i 3.1}
93) FIGURE 4.3.2
i A function projected onto two of the many basis
FIGURE 4.3.1 !
vectors.

The function f pmjec ted onto the basis set of functions.

22
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Example 4.3.1

Is the set {1, x} orthonormal on the interval [—1, 1]?
Note that the “1” and “x” represent functions and not coordinates. Therefore, define
functions f=1 and g=ux. These functions are orthogonal on the interval as can be seen

| |
9= [ arg=[ ara=o

Neither function is normalized (unit length) since

1

IHP={r 1) = f_ild:a:z and [g°=(g|g) = f .d;,.-,-,:z:%

In general, any function hi(x) can be normalized by redefining it as It — hi/||h]]. An
orthonormal set can be formed by dividing each function by its length. The orthonormal

set 1s
1 \/5
_, __1"

23
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B = {\[ESin(T) n=1,273.. ] = {lﬂ’n(l‘) S — 1,2,3...]

x e (0,L)

Hilbert space can be expanded every 2L

melﬂrm or f(x) —an\[ %in(ﬁm)

M=

The expansion coefficients are found by

V| f) = (Y] {melwm ] =3 cultrn | i) =

I m

—_—1 =

— {Wn ‘ Jf) — <\/Esin (?) ‘ f(;.-)) — \/%fﬂLdIf(I) Sin (?)

24
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P The Cosine Basis Set
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sy B. = {%\/%Ln%(?) . forn= 1,2,3...] = (bo. b1, ...}
J— o)
)= culdn)
_ n=

/_E“ =(¢o | f) = (T f(ﬂ) J_f dx f(x)
—< L
=lonlfi= (\E cos(T) f(f'*‘)> = \/% fﬂ e f(x) cos ()

25
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A, The Fourier Series Basis Set
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°i;:‘“° interval (-L, L)

90

| Expzm) n:D,:I:I,:I:Z...]

orthonormality relation

(le_L exp( nm) le_Lexp(sﬁ ?)) = Sy

f(x) = Z E:x:p (i %)

?’E——Dﬂ
The coetticients D,, can be complex.

The wave is required to repeat itself every length L instead of 2L given above.

. 1 2nmx
B=1{—expli n=40, £1, £2
L/E p( L)

For three dimensions

B = I%E.‘J{p(ﬁé ‘r‘)]

By: Dr. Jabbari V=LLL. and k= 2mm/Ly), k, = (27n/Ly), k.=

26
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PN The Fourier Transform
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| f(x) = f: dk a(k)E

| 1
llk) = |¢y) = ‘E E’m> — ()= {x|k)= NGz exp (:ifh‘)]

. E iKx eﬁ.x 1'1. K)x
inner product (K| k) = \/_«/_ f dx S = §(k — K)
. 50
The closure relation 1 — f Ky dk (k]
—00
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Euclidean Functions-Discrete Functions-Continuous
Vectors Basis Basis
Basis (In):n=123 0~ {002 {10 = [uii(0) (k) = ld)pi(x)]

n= Integer
Projector (w| = w-

Orthonormality — {m | n) =4,

Complete 0) =3 cqlm)
Components = (n|v)
[nner Product (v |w) =) 2w,

Closure Y m{n| =1

i = Integer
(f|= [dxf(x)o
(| 1) = Oy
)= Tl
(1) =Y cutty ()
e = fin |
f 8= [dxf*(x) 3()
Lot )iy | =1
dx=x")=) ui(x) uy(x)

il

k = Real
f| =[x f
P | i) = Uf K}
if) = [ dkcy I
flx) = [ dx ci dylx)
= (e | )

\f|g)=[dxf*(x) glv)
[dk gy (el =1
- ¥) = [dk §;() i)

BY: Dr. Japparil
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