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Electric Field Perpendicular to an Interface
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In the region where the dipole field points downward, the
electric field decreases and where the dipole field points
upward, the electric field increases. Therefore across the
interface, there must be a discontinuity in the electric field
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Case 2 With Free Surface Charges
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Electric Fields Parallel to the Surface
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A, Law of Reflectioni Snell’s Law and the Reflectivitx
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relation between the magnitude
of the magnetic and electric fields
in a dielectric
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A, The Law of Reflection
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i&:’” we show that the angle of incidence equals the angle of reflection
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Finally the results are:
0; =6, (Law of Retlection)
mysing = ny sin®;  (Snell’s law)
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vity for TE Fields
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The reflectivity and transmittivity versus the

angle of incidence for n1=1 and n2=1.5
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The Poynting Vector

The Poynting vector describes the energy flow from the material

Introduction to Power Transport for Real Fields and Complex Fields
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Time

The instantaneous power P(z, t) (Watts through the surface) depends on both
the position z and time t

—

P(z.t) =S5-A=5-A2
P(z,.t) = S - AZ = AE,H, Sin>(k,z, — et)

average power (averaged over a cycle)

— T = " ' !
# (P(’z, f])izr}—‘fﬂ dt P(z, f)‘ (P(:z, f})iz é—ﬂthn

T =2m/m
The Poynting vector can still depend on time, the amplitudes E, and H, .
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Power flows through a patch of area da.

JPin = _pnul-

The total power leaving the surface must be
the sum of the power through each patch

P= 3" 5(F.t) da; = S(F,t) - da

surface surface

— 0 1
Example 3.5.1 G — r/r?

da = r* sin6dody

= 2T T
P:fS-dﬁ:ff%-FRiSil‘lﬂdﬂd:‘pzf f sin 0d0dg = 47
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Power Transport and Energy Storage Mechanisms
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First the electric and magnetic fields store energy

y Second, electric and magnetic dipoles store energy
Third, the interaction between currents and fields can
¢ generate energy

We need to calculate the Poynting vector by using Maxwell’s equations

divergence
volume surl'ace

VE:V(%xr%’)z,ﬁxvx{%_ .}’.v}{r%f
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Substituting for the divergence of the Poynting vector gives

- = B b ) .
plnzfﬂgé,deJ-%fdv (%;‘P{2+E—ﬂﬂgﬂ2)+ fdv.fE +fdv_f_tﬂff‘(ﬂmﬁr

2 ot ot
——— g P "
damping field energy polarization energy — magnetization energy
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Poynting Vector for Complex Fields
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plane wave & ~ =it mm) £6F = |6

Example 3.5.2:
For the plane waves given in Section 3.5.1, specifically

E(z 1) = Epsin(k,z — o)X #(z, 1) = H, sin(k,z — wt)i)

5 ?

C—————
complex notation
-

= E e*taivy  and  # =Hﬂe‘t“‘”fe“ﬁ’f{
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pd
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= EE Eeﬁ::—ewf EeqﬂH; E—eﬁ.:—l—ewf o~ — 5

LE,H;

. 1T L 1 (T
(S) = —f dt & x H = f dt z E, sin(kz — wt) H, sin(kz — wt) =
0 0
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A, 3.6 Electromagnetic Scattering and Transfer Matrix Theory
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Where we have the two parallel mirrors like Fp and Vcele is the suitable for use the TMM
Introduction to Scattering Theory
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where S; symbolizes the
I scattering matrix and NOT
the Poynting vector. The
scattering matrix describes
the particular optical

Ba element. Most importantly,
Ba the output is linearly
related to the input.

The phase can be affected
by the thickness of the
plate, the type of
material, and the
reflection and
transmission coefficients
at an interface.

B
w
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/4

B
i

o

E?-[ = Z o

b, -
b1 = 5S511m
FIGURE 3.6.2
The reflect o; and transmitted J; amplitudes ad IETE — 5’2[ ﬂ[

together to produce by and b, respectively.
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by = Sy1a1 + Spaz

\
by = 5o1a1 + 5203 /

The Power-Amplitudes

=% E, u(x,y) exp(ik,z — iwt)

H = y H, u(x, y) explikyz — iwt)

The function u(x, y) can be normalized such that

2
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> Often we simply take “u=constant’’ for convenience.
O § 90

The phasor representations for the electric and magnetic fields become
E(z) = E, u exp(ik,z)
H(z) = H, u expl(ikyz)

If the “power amplitudes” =a(z) then the total power will be: P — ﬂﬂ*

ao II

To find the amplitude ““a
E

and v=c¢/n

£=MN"¢,

21,12
E* P |E|=|u|” . i

(i)
21,125
o o - [EFlul™z

H
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P = a(2)a*(z) = fdm E-S:%Eﬁfdxdymﬁ=%|E|E

1 1 o _ 1
L_?g f— {‘_“_

n v Eolto ’V’ Efdg

P = a(z)a*(z) = — —IEP= "F

\/?\f EP= 2 nEQE )

to account for changes in
the phase of the wave due
to propagation

1

o
does not contribute when the power is calculated P=aa
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Reflection and Transmission Coefficients

. a—a
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udg y0 transverse magnetic (TM) wave has the magnetic field
parallel to the interface (transverse to the plane of incidence)
a(z) = v % 1 E etz

while a transverse electric (TE) wave has the electric field
parallel to the interface (transverse to the plane of incidence).

Ny | Ny Ny | Ny

Transverse magnetic Transverse electric
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. The reflection coefficients can be written as follows
wés}o

111 COS ) — 117 COS ¢
¥F =
111 COS ) + 117 COS ¢

TE

—15 COS 0 + 1y cos ¢ ™
F =
112 COS () + 111 COS ¢

P Hy —
S_f}andcf:_ﬂ_‘ L 2

1y + 1o
2costsi
_ ‘fm sin ¢ T
sin(f + ¢)
2 cosfsin
- ¢ ™

= sin(f + ¢) cos( — ¢)

sin(f + ¢) = sinf) cos¢ — sin ¢ cos
M1
0 =0=4¢) — t_n = it (Normal Incidence)
1+ 12
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Cwd g 3o reflection and transmission coefficients? 1\ / °
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P by B /1 Eppe ™ - Ep .

pa — = —r k.2 — 7T / \

i ,,,.n’]'il'[f:.a[l:'_’ " 1a—p f:.a[ b, b,
Ny | Ny
g SR | s r .
T2 = h_z — szbzei. : — E@ — ”_2 -IF'I—:-E &
i1 W 11 EH-IEH‘M: =0 ‘\n‘l 11 Eg '\" 8| >

% *
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Praru-". by b3 b b " o

P ine - (1 H-T (1 (1

Finally, we can write energy conservation

P inc — P refl T P trans

pinc — RPinc"'TPinc
R+T=1 »R M2 T =;'::_2|1%H;J_I"'3 = |t
1
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&

T =t ot
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-~ Scattering Matrices
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performs on optical beams

(E’-"I ) g (”'I ) (5'11 S12 ) (”'I ) (SHHI + 5'{2”2)
b - 12 - S21 Sy a2 - So101 + S5»az

— =

(E'-"I ) (SMHI + S12a2 )
by N So1a1 + Sxan

N7
I
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ET-[ ol m . 5-[-[!1-[

ET;E =\ 0 o 5;3-[!!-[ b,
Su=bi/n EEEEE)  S,=-; O<|r<I
Su=bo/m ) 7 = T2

phase change of approximately 180 for a wave reflecting from a medium
with larger refractive index

For example, suppose a, =0 but that a, £ 0. The

N5
scattering matrix becomes: /

b- S12a

( I)Z(‘sz;z) b1‘/ .
E’?g .532!!;1

with S,y =7 and S5, = +r. 3
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work out ok.

512

S»

)(

Note the convention of “—r’’ and
If in reality n1>n2, then the sign of

i1

1>

)

o, 7
r

(.1
r

(

—r T2

T1—=2 r

)

in the figure makes r>0 for nl<n2.
will be reversed; either way, the equations

i1

)

]
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finite thickness with two interfaces

S11
S21

512

5»

E?-[ i1 i1

(n)=5() = e o)

E?g (] i1z

—Tegg =01 /a4
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three different
scattering matrices
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Scattering Matrix versus Transfer Matrix
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1 e 2 T 3
= I f— I f dy ——== -— o
(51) _I(Bz) _1_2(53) 1 :
by -— —= D,
The scattering matrix describes the reflected
d transmitted amplitudes at an interface /
The scattering matrix does not provide a convenient
formulation for solving more complicated problems
So this is where the transfer matrix comes to play a
great role
;r A.I xlll ‘r.r AE "lll As A_.i
R - e - -
] ] I ]
] ] ] ]
i T | T2 Ts
I'| -I;Jr— -'IH— -I}"I— - ~— ——
1& B‘-| 1 1 IIl. Eg 4 Bs E4
\ ’ ' |9 i
\"‘T" |I \_T_...-'
) ] !
\ A

(out) = (T4 )(in)
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Start to find a relation between the scattering and transfer matrices:
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)=+
I’-'g = i1z
On the other hand: Ap=a—*™ — ™ Ax=b; '
By = 51141 + 51283 B1=by B2=2, by = Syiay + Spoas
Ay =50 A1 + 5285 by = So1a1 + Sxnan
1 Sy .
Al=—A ——B
'TSn Tt Syt
By — SiA; 4 S1aBy — EA;_ 3 S11520 — S1257 B,
S Sa1

1 1 -5 I [Ty DetT
T=— a2 G — 21 )
521 (511 —DEt(S)) & T ( 1 —Tp
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A, Example 3.6.1 The Simple Interface
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Ai(z) = Ay olhiz

_ ki = k,n;(n; is real) /
Bi(z) = B, e # ) (

= (o ) e (00) <1(50)

2
T =T1527251

—Det(S) =r*+ 1> =1

T 1 1 —r
 Tio2 (—r ﬁ’+t2)

A single interface is not very interesting
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P N Example 3.6.2 The Simple Waveguide
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Cwd g yo A =ay "'i I = by =A;
| I
[ |
| | ¢ _
by = E, expliky(z, + L)] = a1 exp(ik, L) B1=5y L i =5
| |
Z, Z,+L

1y = E, exp|—iky(z, + L)] = by exp(—ik,L)

b1 = az exp(ik,L)

scattering matrix;
(IT-I ) (S“ 512 ) (H-[ ) ( 0 E){p(iknL) ) (ﬂ-[ )
IT;g - 5;3-[ 5;1;3 12 - E}{p(ikﬂf_.) 0 i)
transfer matrix ;
A Ay
(5)-7(2)
By B,
. 1 1 —5» 1 1 0 exp(—iky,L) 0
TS\ Sy —Det(s))  explikil)\ 0 exp(ik,L) ) 0 exp(ik,L)

By: Dr. Jabbari

37



o 3T ol&iats
—d § 0

Ay
B>

0

|

By: Dr. Jabbari

Example 3.6.3 The Fabry-Perot Cavity
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et 4 ot J\ By =0
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The Fabry-Perot Laser
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Cuid g 40 How the presence of gain (or loss) affects the TMM
As we know : "
Tn T 1/ e —pr2el? re ™ e =Ry
Ty Taxn T\ —re @ 4 relv  —2e 0 4 ol
S = L (T DetT) _ = T»; Det T
T'I 1 1 —T'[z IL:_‘_E'['!:| — ?”2 IL:_"!-'I'EJ 1 —TIE
output by —re i 4 yel®
by = Sniay . = = S“ = —lgh 2 Al -
mmput  ay e~ —ree
. P L gpln
o de il Do =
l —g/a
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B1=ﬂ=52

reflected power
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1 —r2e2

. 2
ol Pref — |S'I'I| pin
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Caiidg 40 1 — e2i0)(1 — p2i¢)*
1S11]°= 5115%, = 1 ( : )( ) .
(1 — r2e2®)(1 — r2 e2ie)
{f’ kHL Where: JEC H — i'gn&l

2
\ / Snet = rg — Wint

O =y + iy =k,L =k nL—:g;El

The power reflectivity R is related to the Fresnel reflectivity r (assumed real)

We define an effective reflectivity R by g — :’iﬁfexp( —2¢;)

And L(e‘-‘ﬁ;) *m—.: g W

< =

Sy12= R 1 + exp(—4¢;) — 2exp(—2¢;)cos(2p,) R1 4+ % — 2% cos(2¢,)
e T R exp(—4) — 2R exp(—20)cos@hy) | 1+ # — 2R cos(24n)
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Cuirdg 50 cos(2¢y) = cos?(¢y) — sin®(gy) = 1 — 2sin’(¢)

[1 — &]"+4 Esin? ¢,

PrE = |51 EPEI‘L:P
i = |51 "[1 _R]2+4R5i112¢*r

lirJin

Example 3.7.1 A Fabry-Perot Etalon Without Material Gain or Internal Loss

From the previous: ¢ = ¢, + i¢p; = k,L = k,nL — zfg;‘?‘ L=kiT
with R=R for real ¢ EH) ¢h; = ()
4 sin®(k,nL)
[1 — RI*44R sin®(k,nL)

Pt = |S11|*Pin = R Pin

Pirans = ISE'IIEPin — [1 — 511 |E]Pin
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Suid g 50 1.0 (|1r NN 7T
= 0.90
5 R=034
=
. . =
larger facet reflectance R gives larger finesse £ 0.34
. . L
(narrower line widths) T 0.5 _
=]
N
greater optical loss must lower the finesse of =
the cavity S 010
0.0 ' '
_ 10 - , - 7 -10 -5 0 5 10
%’ 0.10 Phase angle
(=
s
2 phase angle k,nL.
E 0.34
c
S 05 — ) )
5 k,=2m/A, and A,=c/v=2nc/w
8
E
2 0.90 L Only a very narrow band of wavelengths
0.0 L NN N 1 can propagate through the etalon thereby
=10 -5 0 5 10

Phase angle producing a very narrow bandpass filter
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Longitudinal Modes and the Threshold Condition

Pumping the resonator can initiate lasing.

Above threshold, the laser produces considerably more power than it receives

from the input beam.
The effective transmittance and reflectance must become infinite concerning the

ring laser and op-amp oscillator. 511 or |Sy)? (etc) equals to zero.
‘ Pump : Optical Power or Current

b'{ — 5‘['{”{ — rEI' |'5II| P in

—re % 4+ re 1 — e
S = - - =t
U Temie — 2 it 1-Re™
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. a—a)
oo tls 65

o 3T ol&iats
S § 40 D=1-Rexp gnelL exp(i2Zk,nL) =1—R Exp(gnelL) [cos(2k,nlL) + i sin(2k,nL)]

D=0 l{ Real part=0 /

Imaginary part=0

Imaginary Part Produces the Wavelength of the Longitudﬁpal Modes

0 = sin(2k,nL) =2 Si%L) cos(k,nL)

0
\4 \
konL = m "’” =1,2.3,..) =0 we would not necessarily
find the real part of the
Il ‘ 27, denominator to be zero
-"'I.ﬂ —— f}l" I H —
m m

Hc
l’mzﬁ (H‘I:LZ, ) I/\/\I

: The m=3 longitudinal mode 4
By: Dr. Jabbari
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A, the spacing between adjacent frequencies of the longitudinal modes

Lt d s

o 3T ol&iats
iy 0 vit = mc/(2L). Let: Am=1
Amc
1) — ‘ C An C
Alvn) = 21 nAvV+ VAN =— — Avind+v—| = —
2L I 2L
. . an
Define the group index: Hg =1+ vV—
v

C C

A =— 2
v EL]'TE ELHg

If for simplicity we choose n,=n

£oC
2L.n

Frequency of the U'l""-:' = »-"’vu Av+vAz, =0 Or |AZy| =

longitudinal modes
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o 3T olKidts

oy 5o The actual line shape pattern appears in:

An extremely important point concerns the role of homogeneously vs. inhomogeneously
broadened lasers.

A homogeneous broadened laser will have at most one lasing longitudinal mode.
For an inhomogeneously broadened laser, any number of longitudinal modes can lase.

The reason for these different behaviors has to do with the way the resonator produces the
gain

By: Dr. Jabbari
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A, Case 2 The Real Part Produces the Threshold Condition
o 3T ol&iats

w2 | Re(D)=1—R exp( gnecl) cﬁs(\% L)

1
k.nl. = mm (m:I,Z,B...)—
<

0=1—=R exp(gnetl) where e=rz-omn

operating above threshold

1 1 1 1
Dnet = —LH(R) or I'e = aine + L (R)

_ Below threshold this denominator would not be small 47
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. .
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Line Narrowin

o 3T ol&iats
Sd9r n Above
threshold
@
Define the finesse F in order to discuss the 2 m
quality of the Fabry-Perot resonator. a Below
jtf“z threshold
4 .

7

(-2,

For convenience, we define an effective
reflectivity Ro as

Ay, =R EKF’(Ene[U

large gain should produce large finesse and small line widths

48
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spectrum of emitted power versus wavelength

o 3T ol&iats
—d [§,)

=1— R exp(gnetl) exp(i2konL) =1 — R exp(gnel) [L%L) + i q11ﬁ<<ﬂL)]

Jw~ 2L/m ‘ 2knl = 2k, L. = 4xl/ 4, ~ 2mim

mode number sin(2k,nl) ~ sin(2mm) =0 and  cos(2k,nL) ~ cos(2mm) =1

U

D 21— R exp(gnel)
4:’3%
(1 — R,)

This means the finess is increase while the effective reflective is decrease

49
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. .
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o 3T ol&iats

. Now we show the finesse becomes large and the linewidth decreases
- § 90

as the pumping level increases

steady-state photon laser rate equation
dy |
U=—-= E'?gr:g]f _ }"E"g(ﬂ'inl + ) + ﬁj{sp

-

dt

Ynet = FS — Wipt = Oy +

BogRep l
V]

_ _ o R , . .
1 — %, =1—R exp(gnetL) =1 — Rexp(al) Exp(ﬁLE \555) as a very important note, the gain
Y is always infinitesimally smaller
1 [ 1 than the loss due to the presence
Gy = — L1} — ..
"L R of spontaneous emission.

It should be clear at this point that

R exp(a,l) =1

: Volsp e e
=Ry =1—R exp(gaal) = 1— Exp(ﬁtg \5;) spontaneous emission prevents
14 the linewidth from actually
A 1 becoming zero.
R — — 00 as gain — loss

(=7 [] - EKP(@)]E 50
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Introduction to Waveguides

o 3T olKidts -
i g 90 geometric optics
two uses rays
complimentary
approaches
EM Waves for Waveguiding
n1 . __ physical optics
(15 > 117) I:2 {) —= I solves Maxwell’s equations
1
N, x‘
’ A\, \ Lateral
t
M4 g ) - Transverse
A m=1 m=0 f\%_'
plfzdal
> Eiﬁ:—ﬂ-{ﬂf
. | < Longitudinal
N e
y
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A, The Triangle Relation
o 3T olKidts
S g yo only certain values of are allowed

The magnitude of the actual wave vector

Only certain values of “h”’
produce standing waves. That is,
there are certain allowed
wavelengths for the transverse
modes approximately given by

‘trans = 21/ = 2ty / (m + 1)

5' .H — Jl:-::'“I bt
- /|

effective index | %oz n dverage speed= ¢/Meg

B < kit

As shown, the vector [ represents
propagation along the length of the waveguide
while the vector ““h”’ represents propagation
perpendicular to the length of the waveguide.
The quantity “h” must also be a wave vector.

B+ = (k)

By: Dr. Jabbari m=0
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3.8.4 The Cut-off Condition from Geometric Optics

———
o 3T olKidts

oy 5o A waveguide can only propagate electromagnetic waves with

certain values for the effective wave vector

This topic shows how Snell’s law and the existence of a critical angle for total internal
reflection (TIR) leads to a minimum value for the propagation constant ki1 < 8

The smallest value of B is the cutoff value i

: \@1
R

A
b

b
*
%

Combining the cutoff condition and the triangle relation, we find that the
effective wave vector must have a magnitude within the range given by

ﬁmin — kn”'[ = .8 = kni"i‘;: — ﬁmax
53
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e v

Unguided Guided

radiation modes
modes

My = Heff = 1.

ﬁ — kﬂ Magy

By: Dr. Jabbari
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group velocity

dew

Dg‘zu — E

do  dodk, _ dk,
= ;_,g dﬁ

T

BT AR T dky dp
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Physical Optics Approach to Waveguiding

The Wave Equations

T
Ng = Ny /

Optoelectronic 1

A slab waveguide with the penetration depth 1/p.

By: Dr. Jabbari
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A, The General Solutions
...

o 3T olKidts
Cwd g 9o

& = yE,(x) exp(ipz — iwt)

iFz=icut
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AP,
P iorstis 650

o 3T olKidts £
W § §0 Ty_l_ (JI{-ZH?; _ ﬁE)Ey — 0

Region1 E,=A exp(—px)

Region 2 E, = Bcos(ix) + Csin(hx)

N v e — g
Ey,(x) exp(:lzl:a \/koﬂf—ﬁ) Region 3 E, = Dexp[p(x +to)]

\

i 4. 2,2 g2
Sinusoidal  kjn7> g

p=VE-RE  h= [k - p

Exponential k7 < g
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