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Electro-absorption Modulators
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Excitons
3

sl sl gy wl 098 bla ) ded S 2 581 BB L b8 LB (6551 L (S5358 )5
o S > ek yo alolil o g wSl Colgs 40 g 0ol duluon sl @3l 08 5 o o) (sol5]

g e b le 5l g S S e 4 Sl o lajle (695 w5l (0
S S8 (plail Hle BB (65 5 5l s (699,8 (15398 (5551 ST bl e i,
993,50 0l3l 9095 (oo il lg s (39,58Ul 5 Wl (o Dl 4 (598 (551 SOy
03,5 (50 a5 0yh (lgis 4y b )b g )0 o] JB gl



Excitons
3

a5 S o0 )8 1 g iile Ll 50 9l gy cnl 5l all ge e )b lils o0 y0>
@M&M‘ C)Ua.o‘cbl.: 99 Sy Sl Lo 0,8 U9JA.§J‘;AQ.>QF‘=L:

o (551 (55 sl 150 0585 5 (9 Sl asdly ralS (655 jlade 4y 5 05

SlE ) olge jo a4 Cawl @l atid 4 wde 0,8 (49 xSl 295 (yginS T NS glay
Rl (o097 y9 i Sl 6 eadyg

Syl oYl lcis joe Job 055 45,0 g cunl sl Lcd Lo le O gt piacs
] prtio 4l gb U 9505100 ax o 51 as



3

Optical Modulation
= Direct modulation on semiconductor lasers:

= Output frequency drifts
= carrier induced (chirp) (ot 3 sb)

« temperature variation due to carrier modulation
(Jol> gmY oo 4 dogi b &)l a3)3 i)
= Limited modulation depth (don’'t want to turn off laser)

= External modulation
= Electro-optical modulation (low efficiency)

= Electroabsorption (EA) modulation (high-speed,
= |ow drive voltage, and high extinction ratio applications)
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Chirp
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External modulation
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:. Electroabsorption (EA) Modulator

s EA modulator i1s a semiconductor device with the
same structure as the laser diode.

= In laser diodes, we inject large enough current to
achieve stimulated emission. While in EA
modulator, we apply electric field (reverse bias) to
change the absorption spectrum. NoO carriers are
Injected into the active region. However, carriers
are generated due to absorption of light.
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j Advantages of External modulation
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:. Advantages of EA modulators

= Low driving voltage
= Low/negative chirp

= High bandwidth

= Integrated with DFB
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‘ Schematics of an EA modulator

(a) Waveguide modulator (  (b) Transverse transmission modulator

—

= Waveguide type is more popular.
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:. Outline

= How absorption spectrum changes with applied electric field (effective-
mass approximation)

= How extinction ratio of modulation can be enhanced in the quantum
well (quantum confined Stark effect).

:>In telecommunications, extinction ratio (r,) is the ratio of two
optical power levels of a digital signal generated by an optical
source, e.g., a laser diode. The extinction ratio may be expressed as a
fraction, in dB, or as a percentage. It may be given by

_ B
=5

:>Where P, Is the optical power level generated when the light source is
on, and £, is the power level generated when the light source is off.

e
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:. Physics behind EA Modulators

= How absorption spectrum in semiconductors can be
changed?
= Physical model: effective-mass equation

= Single-particle representation
= Two-particel representation

Coulomb interaction between electrons and holes: Excitons
Electric field effect: Franz-Keldysh effect

Coulomb+Electric field: DC Stark effect

Coulomb+Electric field+QW: QCSE

15



Absorption Spectrum Change under
) Applied Electric Field

= Franz-Keldysh Effect

= Neglect Coulomb interaction between electrons and
holes.

s DC Stark Effect

» Franz-Keldysh effect plus Coulomb interaction between
electrons and holes (excitons).

= Quantum confined StarK effect (QCSE)
= DC Stark Effect in quantum wells

= Excitons been confined in quantum well. Stark effect
enhanced.

16



Absorption Spectrum Change under
) Applied Electric Field
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s Franz-Keldysh Effect
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s Franz-Keldysh Effect
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B

= Quantum well modulator
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s Stark Effect
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s Stark Effect
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s Stark Effect
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= Quantum confined StarK effect (QCSE)
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‘-. Schrodinger equation
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:. *Effective mass approximation

= Electron moving in semiconductor crystal with periodic potential V (r) under
the influence of a potential U (r).

{- g +vcrysta.(r>+U(r>}P(r>=E‘P(r)
2m,

= Effective mass approximation: if the potential is slowly varying compared to
the period of the lattice, the above equation can be replaced by effective-mass
equation as follows (section 4.4.1 and appendix B):

{— ;ln* V' +U (r)}¢(r) =[E - E,(k =0)}(r) P(r)=¢(r) u, (r)

that is the potential causes the envelope of the fast-varying Bloch function to
change. Without potential U (r), the envelope ¢ (r) reduces to plane wave
. h°k?
exp(ik -r) and E=——
2m
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:. Form of U (r)

= Franz-Keldysh Effect

U(r)=eF-r Electric field effect

= DC Stark Effect (slow-varying approximation only holds for
Wannier excitons)

ez Coulomb+Electric field

47Tgr (re - rh)

U(r,)=ekF-r,—

= Quantum confined Startzeffect (QCSE) coulomb-+Electric field+QW

U(r,)=eF-r,— i +V,(r,)

471-‘C"r (re - r.h)
./ 27




Stark splitting & Stark shifting
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Stark Effect

B

Stark splitting

Stark shifting
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Effective mass approximation in
) Two-Particle Representation

= Since U (r) is in general a function of both electron and hole, it's more
convenient to combine two single-particle equations of motion for
electron and hole together.

= Effective-mass equation for electrons:

|:_ 2}?:]* Vg +Ue(re) ¢e(re) = [Ee o Een(k - 0)]¢e(re)

e

Effective-mass equation:for holes:
hZ
{_Fvﬁ +U, () |0, (r,) = [Eh —-E, (k= O)]¢h(rh)

h

Add them together -

7 7
{— Vi = ViU +Uh(rh)}®(re,rh) -[E-E, Jo(r..r)
e h

where CI)(re’rh) = Z B(ke’ kh)¢e,ke (re)¢h,kh (rh) and E = Eh + Ee lP(r) — gﬂv(r)u(r)

Ko ki

ke Kp
originalwavefunctionis W(r,,r,) = Z B(k,, kh)¢e,ke (r, )¢h,kh (rh)uclke (re)uvlkh (r,) Q
30



Effective mass approximation in
) Two-Particle Representation (cont.)

(D(re ) rh) = Z B(ke’ kh)¢e,ke (re)¢h,kh (rh)

ke’kh

can also be written in the expansion of plane wave modes of k, and k, asfollows.

@(re,rh)=k§h Ak, k)" - : n

iKeTe AlKpTH

= In the path of generalizing single-particle effective mass equation to
two-particle effective mass equation, we didn’t make new
approximations.
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Validity of Slowly-Varying Approximation
) In two-particle representation

= Franz-Keldysh Effect
U(re’rh):eF’(re_rh) e=—|e]

For 5V applied voltage, there is 500kV/cm electric field across 0.1um active
region. The variation of electric field across a lattice site is 500kV/cm x 5.6A ~
0.028V which gives an energy variation of 0.028eV for an electron.

32



Excitons
3

= The effective-mass equation for an electron-hole pair is:

h° h°
{— Vi Vi +ue<re)+uh<rh)}d><re,rh) =[E-EJo..r)
e h

1| 1 e’
where U, (r,)+U, (r,) ==
e( e) h( h) Z{NeNh Z[4ﬂgr |re,i _rhvj |:|}

i

(remember to put afactor 1/2 because of pairinteraction)

We have to sum over all possible interactions between electrons and
holes. But if the carrier density is low enough, we can neglect the
contribution from the rest of the electrons and holes and consider only

bare Coulomb interaction, that is:
_e2
e, v, -1, |

U.(r.)+U(r,) =

33



:. Interaction
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:. *Effective-mass equation for Excitons

=  With the bare Coulomb interaction between electron and hole, we
have the effective-mass equation for an exciton as follows.

h2 ) h2 , eZ
-—V,——=V, - d(r,,r,)=|E-E r,,r
{ 2m. 2m. " Ane, |r, -1, | h) = [E- B otr)

Any central-force problem (i.e. the potential is a function of relative
coordinate between two particles) can be separated into center-of-
mass motion and relative motion.

mr, +mtr,

Relative coordinate: r =r, —r, Center of mass: R =——°—-.
m, +m,

(D(re’ rh) = (D(R’r)

35



Center-of-mass motion and Relative

) motion

= Effective-mass equation in two-particle representation for
any central-force problem can be rewritten as follows.

2M 2m

r

{_h_zvé _ V? +U(r)}(D(R,r) =(E-E,)®(R,r)

= Center-of-mass motion is a free-running solution:

iK-R

D(R,r) =2

N o(r)

{_ zh Vi+U (r)}(p(r) =Sop(r)
m

r

hZKZ

=E-E, -
: v 2M

36



:. *Solutions for Excitons

= Same as hydrogen atoms (3D or 2D)
= EXxciton Bohr Radius and Rydberg energy

L Al _ mge
o9 glen 98 = m e’ Y 2h%(4re,)?
Energy levels: bound states and continuum
R
Forboundstates(3D): E,=-——L
n
R
Forboundstates(2D): E, =-— ——
(n-1/2)

= lonization energy for ground state exciton in 2D case is 4 times larger
than it is in 3D case. Therefore in QW, it's easier to form bound
exciton states.
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:. Energy of an Orbital

Two factors control the energy of an orbital for most
atoms: the size of the orbital and its shape.

An atomic orbital is a mathematical function that
describes the wave-like behavior of either one electron or
a pair of electrons in an atom

38
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) Design considerations for EA modulators

Operation principle

Contrast ratio

Insertion loss

Modulation efficiency

Chirp considerations and optimization
Packaging and Integration
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