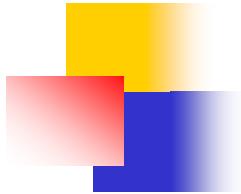


Electro-absorption Modulators

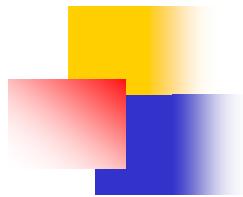
مقدمه: به وسیله مدولاتورهای نوری می توان سیگنال نوری را پس از خروج از لیزر مدوله کرد . با استفاده از برخی انواع مدولاتورهای نوری خارجی، مدولاسیون خطی امکان پذیر می شود.

این مدولاسیون می تواند با استفاده از مواد نیمه هادی بدن و یا مواد با طریق یک ولتاژ الکتریکی استفاده می شود.


این مدولاسیون می تواند با استفاده از مواد نیمه هادی بدن و یا مواد با چندین نقطه یا چاه کوانتوومی تحقق یابد.

EAM اغلب در قالب یک waveguide با الکترودها برای اعمال یک میدان الکتریکی در یک جهت عمود بر پرتو نور مدوله شده ساخته شده است.

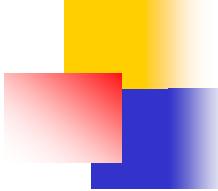
پهنای باند مدولاتور دهها گیگا هرتز که باعث می شود برای ارتباطات فیبر نوری مفید باشد.


EAM size نیاز به کوچک و ولتاژ مدولاسیون کم دارد

Excitons

اگر فوتونی با انرژی قابل قیاس با گاف انرژی بر یک نیمه رسانا فرود آید توسط الکترون های موجود در نیمه رسانا جذب می گردد این انرژی نوری جذب شده توسط الکترون ها سبب آزادی ان ها از قید اتم های همسایه شده و در نهایت الکترون ها آزادانه در بلور حرکت می کنند.

این مسئله از دید تئوری نوارها در جامدات به منزله تحریک الکترون از نوار ظرفیت به نوار رسانش می باشد. اگر انرژی فوتون فرودی بیشتر از انرژی گاف نوار باشد این تحریک یک تحریک انرژی قوی به حساب می آید و الکترون به نوار رسانش می رود و آزاد می گردد و جای خالی آن در نوار ظرفیت به عنوان حفره تعریف می گردد.

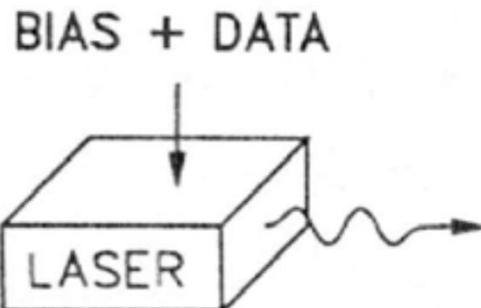


Excitons

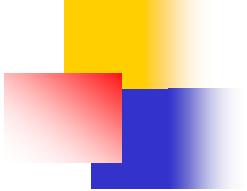
حفره دارای بار مثبت می باشد از این رو با الکترون در نوار رسانش پیوند برقرار می کند که به آن جفت الکترون حفره تحت جاذبه پتانسیل کولنی یا به اصطلاح **اکسیتون** گفته می شود و به مقدار انرژی کاهش یافته الکترون و حفره در اثر پتانسیل کولنی انرژی بستگی گفته می شود

بطور خلاصه اکسیتون، زوج الکترون حفره مقید به هسته اتم است که در مواد ارگانیک و پلیمری از جذب نور بوجود می آید.

سیستم اکسیتونی یک ساختار نسبتا پایدار است و در نوع خود طول عمر نسبتا بالایی دارد که از درجه 100 پیکو تا نانو ثانیه متغیر است.



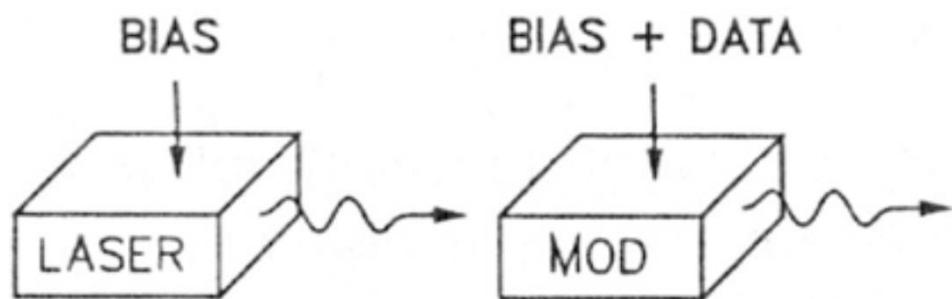
Optical Modulation

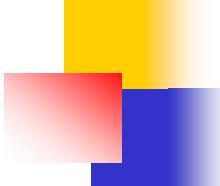

- Direct modulation on semiconductor lasers:
 - Output frequency drifts
 - carrier induced (chirp) (ناشی از حامل)
 - temperature variation due to carrier modulation (تغییرات درجه حرارت با توجه به مدولاسیون حامل)
 - Limited modulation depth (don't want to turn off laser)
- External modulation
- Electro-optical modulation (low efficiency)
- Electroabsorption (EA) modulation (high-speed, low drive voltage, and high extinction ratio applications)

Direct modulation

- روش‌های اولیه بکار رفته در سیستم‌های مخابرات نوری دیجیتال، مدولاسیون مستقیم لیزر است که مدولاسیون درون کاو اک لیزر ایجاد می‌شود.
- در شمای مدولاسیون مستقیم سیگنال الکتریکی با یک جریان بایاس ترکیب می‌شود و به پایانه‌های دیود لیزری اعمال می‌شود. سیگنال الکتریکی بدین ترتیب بصورت مستقیم نور لیزر را مدوله می‌کند.

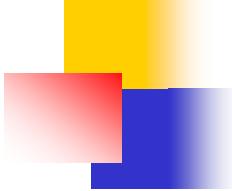
- برتری ابتدایی این روش سادگی ذاتی آن است.

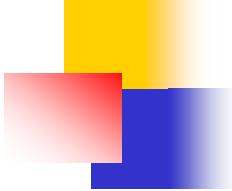

Chirp


- هنگامیکه هدف مدولاسیون با نرخ بیت بالاتر از یک گیگاهرتز باشد، تحرک پیچیده در تزویج چگالی الکترون و فوتون در کاواک لیزر، مسبب تغییرات نامطلوب در فرکانس نوری حامل اطلاعات می شود که بدان چرپ اطلاق می شود.
- گرچه نمونه هایی از لیزرهای با چرپ کم ساخته شده است، بدست آوردن نتیجه مناسب برای استفاده از آن در سیستم چالش جدی می طلبد.
- گزینه بهتر دیگر مدولاسیون بیرونی بجای مدولاسیون مستقیم لیزر است

External modulation

■ در مدولاسیون بیرونی فقط جریانی ثابت به لیزر می شود که در این حالت نوری پیوسته با پهنه ای خط باریکی ایجاد می شود . سپس با اعمال سیگنال مدوله کننده به مدولاتور که خارج از کاواک لیزر است، اطلاعات درون حامل نوری کدگذاری می شود.

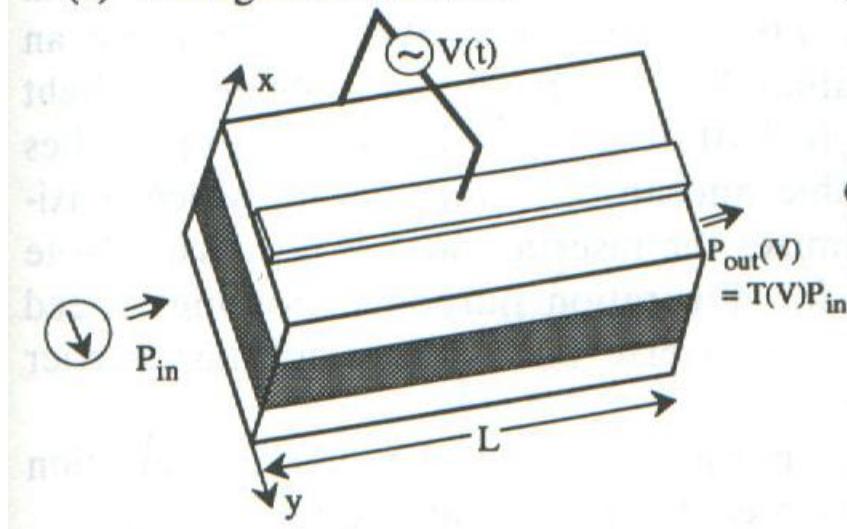

■ برتری این روش آن است که عدم تزویج فرایندهای تولید و مدولاسیون نور، در مجموع باعث بهبود کارکرد فرستنده می شود . اگرچه انواع مختلف مدولاتورهای الکترواپتیک و مگنتواپتیک موجود است ولی فقط ویژگی های مدولاتورهای بیرونی الکترواپتیک است که آنها را برای کاربردهای مخابرات پر ظرفیت مناسب می سازد


Electroabsorption (EA) Modulator

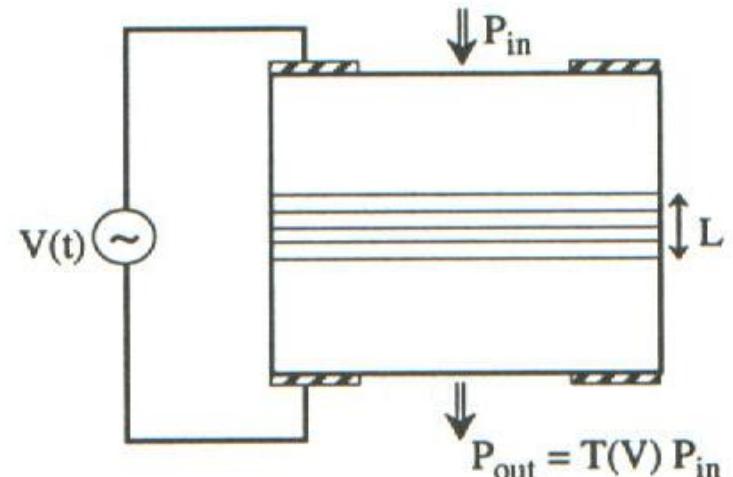
- EA modulator is a semiconductor device with the same structure as the laser diode.
- In laser diodes, we inject large enough current to achieve stimulated emission. While in EA modulator, we apply electric field (reverse bias) to change the absorption spectrum. No carriers are injected into the active region. However, carriers are generated due to absorption of light.

Advantages of External modulation

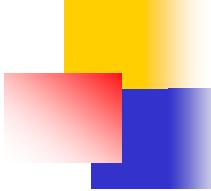
- * پهنه‌ای باند پهن،
- * نسبت مجزایی بزرگ،
- * خلوص طیفی عالی سیگنال ارسالی،
- * توانایی انتقال توان نوری زیاد،
- * اعوجاج مدولاسیون کم
- * قابلیت ساخت و تولید مجدد آنها قابل توجه است .



Advantages of EA modulators

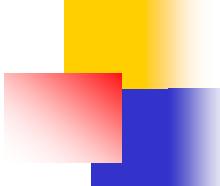

- Low driving voltage
- Low/negative chirp
- High bandwidth
- Integrated with DFB

Schematics of an EA modulator


(a) Waveguide modulator

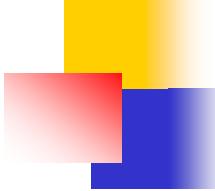
(b) Transverse transmission modulator

- Waveguide type is more popular.

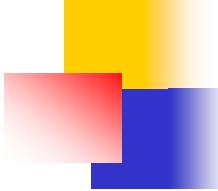

Outline

- How absorption spectrum changes with applied electric field (effective-mass approximation)
- How extinction ratio of modulation can be enhanced in the quantum well (quantum confined Stark effect).

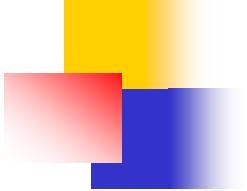
→ In telecommunications, extinction ratio (r_e) is the ratio of two optical power levels of a digital signal generated by an optical source, *e.g.*, a laser diode. The extinction ratio may be expressed as a fraction, in dB, or as a percentage. It may be given by


$$r_e = \frac{P_1}{P_0}$$

→ where P_1 is the optical power level generated when the light source is on, and P_0 is the power level generated when the light source is off.


Physics behind EA Modulators

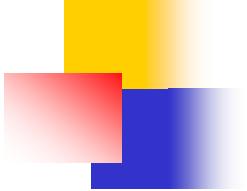
- How absorption spectrum in semiconductors can be changed?
 - Physical model: effective-mass equation
 - Single-particle representation
 - Two-particle representation
 - Coulomb interaction between electrons and holes: Excitons
 - Electric field effect: Franz-Keldysh effect
 - Coulomb+Electric field: DC Stark effect
 - Coulomb+Electric field+QW: QCSE


Absorption Spectrum Change under Applied Electric Field

- Franz-Keldysh Effect
 - Neglect Coulomb interaction between electrons and holes.
- DC Stark Effect
 - Franz-Keldysh effect plus Coulomb interaction between electrons and holes (excitons).
- Quantum confined Stark effect (QCSE)
 - DC Stark Effect in quantum wells
 - Excitons been confined in quantum well. Stark effect enhanced.

Absorption Spectrum Change under Applied Electric Field

- اثر میدان الکتریکی اعمالی در جذب نور در نزدیکی لبه های باند نیمه رساناها موضوع قابل توجه سالیان اخیر بوده است.
- این روشها شامل تونل زنی بکمک فوتون درون باند یا اثر فرانز-کلدیش و جذب اکسایتون یا اثر کوانتمی استارک است.
- با توجه به پیشرفت های اخیر در ساخت ساختارهای لیزرهای نیمه رسانا با چاه کوانتمی، تغییر در میدان نوری با میدان الکتریکی اعمالی یا بعبارتی مدولاسیون نور نیز، ممکن شده است.

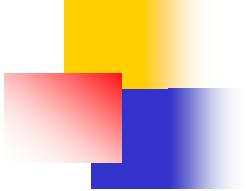

■ Franz-Keldysh Effect

اثر فرانز-کلديش بصورت جذب نور توسط نيمه رسانا با اعمال ميدان الکترويکي خودنمايی می کند.

خميدگی يا انحنای باندهای انرژی در یک نيمه رسانا، احتمال تونل زنی یک الکترون در شکاف را افزایش می دهد. بنابراین لبه جذب با اعمال ميدان الکترويکي E بسمت انرژیهای کمتر انتقال می یابد. انتقال انرژی باندگپ ΔE

$$\Delta E = -\frac{3}{2} (m^*)^{-\frac{1}{3}} (q\hbar E)^{\frac{2}{3}}$$

که جرم موثر، بار الکترون q و ثابت پلانک \hbar می باشد

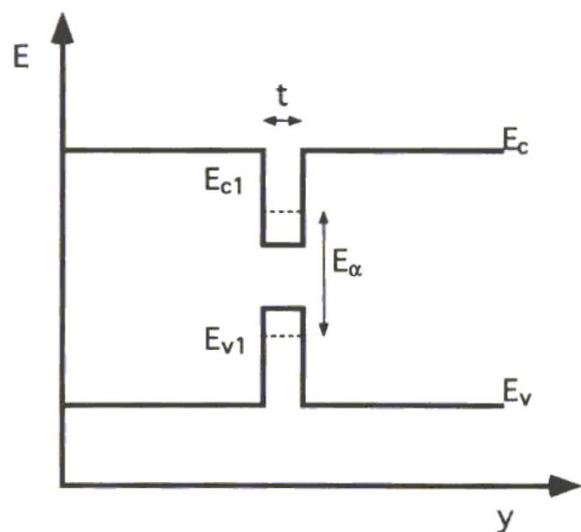


■ Franz-Keldysh Effect

استفاده از اثر فرانز-کلديش برای مدولاسيون نور به اين صورت است که هنگام کار در نزديکی لبه باند، جذب با ميدان الکتریکی تا 10^{-4} cm^{-1} در حال افزایش است.

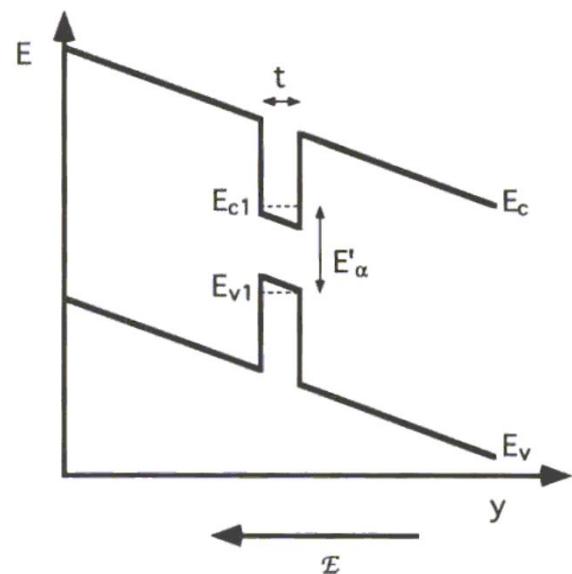
در واقع با تغيير لبه جذب $\Delta\alpha$ وابسته به اثر مزبور تغيير در ضریب شکست را نیز بهمراه دارد و از رابطه زير حاصل می شود.

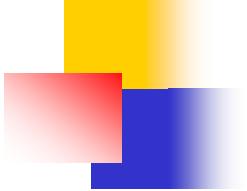
$$\Delta n = F_{fk} E^2$$



■ Quantum well modulator

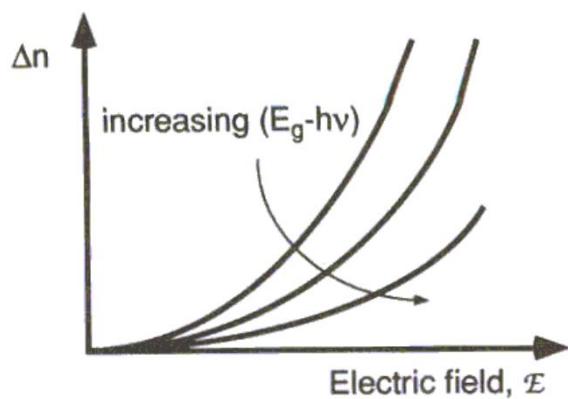
- ساختارهای چاه کوانتمی در بسیاری از ادوات اپتوالکترونیک با استفاده از نیمه رساناهای گروههای سوم و پنجم جدول تناوبی ساخته می شوند.
- از جمله در لیزرهای برای بهبود عملکرد و کاهش جریان آستانه و اجازه تنظیم دقیق طول موج انتشار بکار می رود .
- برای مدولاسیون الکترواپتیک نیز، بازده تغییرات با میدان الکتریکی، با حضور چاه الکترونی بنحو قابل توجهی افزایش می یابد، بنابراین مدولاتورهای چاه کوانتمی چندگانه موضوع قابل توجهی برای تحقیقات است


■ Stark Effect

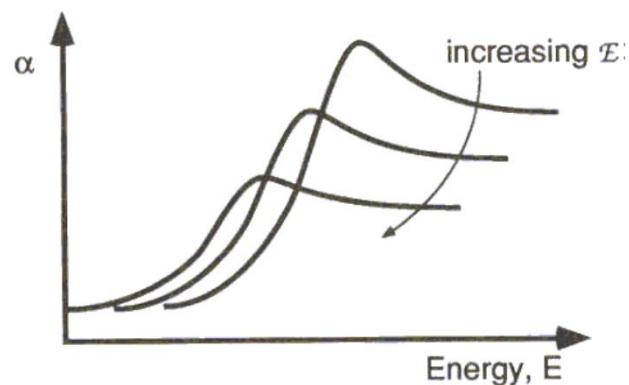

- چاه کوانتمی، ضخامتی در مقیاس طول موج الکترون دارد و زیرباندهای الکترون و حفره گستته ای را مطابق شکل نشان می دهد. انتقال درون باندی مانند جذب فوتون بین زیرباندها در انرژی $E\alpha$ صورت می پذیرد.

■ Stark Effect

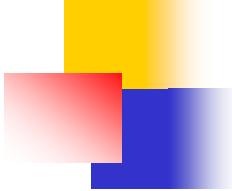
- هنگامیکه میدان الکتریکی اعمال می شود، باندها مطابق شکل مورب شده و الکترونها و حفره ها از لحاظ انرژی به یکدیگر نزدیک می شود بنحویکه خواهیم داشت $Ea' < Ea$



■ Stark Effect

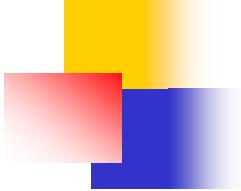

- بعلاوه یک اکسایتون که لزوماً یک جفت الکترون و حفره محبوس با جاذبه کولمب هستند، می‌توانند در دمای اتاق و با اعمال میدان الکتریکی قوی شکل گرفته و پایدار بمانند که منجر به اثرات نوری زیادی می‌شود.

■ Quantum confined Stark effect (QCSE)


اولین تغییر در جذب نور با میدان الکتریکی اعمالی برای طول موج های نزدیک بندگپ از کاربردهای قابل توجه مدولاتور چاه کوانتم است. این پدیده به اثر استارک کوانتمی محبوس (QCSE) معروف است و منجر به الکتروابزوربشن قوی وابسته به پلاریزاسیون می شود. تغییر در موقعیت لبه جذب به انرژیهای کمتر با میدان الکتریکی اعمالی بصورت شماتیک نمایش داده شده است.

ضریب شکست با میدان الکتریکی اعمالی

طیف جذب
برای میدان های الکتریکی اعمالی
متفاوت



Schrodinger equation

Ψ را بعنوان wavefunction می‌شناسیم و U پتانسیل است.

همان بحثهایی که بور از طریق فیزیک کلاسیک ارائه داد که نیروی جاذب مرکز با نیروی گریز از مرکز برابر است را شورلینگر با معادله خود حل می‌کند.

در معادله شورلینگر اگر وارد سیستم کروی شویم متغیرها، ρ, θ, ϕ می‌شود.

*Effective mass approximation

- Electron moving in semiconductor crystal with periodic potential $V(\mathbf{r})$ under the influence of a potential $U(\mathbf{r})$.

$$\left[-\frac{\hbar^2}{2m_0} \nabla^2 + V_{crystal}(\mathbf{r}) + U(\mathbf{r}) \right] \Psi(\mathbf{r}) = E \Psi(\mathbf{r})$$

- Effective mass approximation: if the potential is slowly varying compared to the period of the lattice, the above equation can be replaced by effective-mass equation as follows (section 4.4.1 and appendix B):

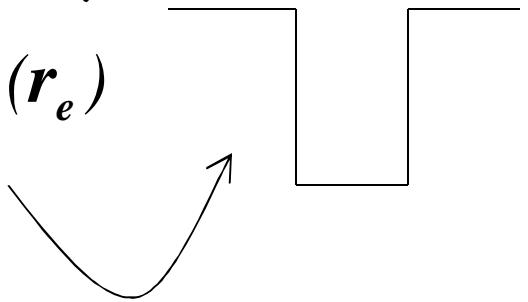
$$\left[-\frac{\hbar^2}{2m^*} \nabla^2 + U(\mathbf{r}) \right] \phi(\mathbf{r}) = [E - E_{nk}(\mathbf{k} = 0)] \phi(\mathbf{r}) \quad \Psi(\mathbf{r}) = \phi(\mathbf{r}) u_{nk}(\mathbf{r})$$

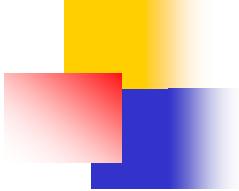
that is the potential causes the envelope of the fast-varying Bloch function to change. Without potential $U(\mathbf{r})$, the envelope $\phi(\mathbf{r})$ reduces to plane wave

$$\exp(i\mathbf{k} \cdot \mathbf{r}) \text{ and } E = \frac{\hbar^2 k^2}{2m^*}$$

Form of $U(r)$

- Franz-Keldysh Effect

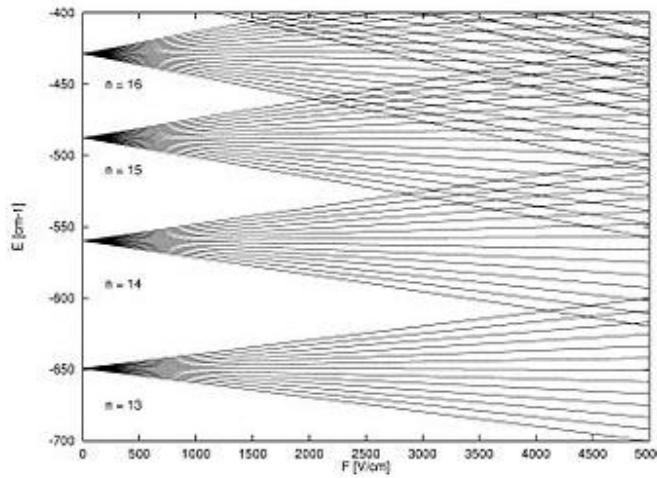

$$U(\mathbf{r}) = e\mathbf{F} \cdot \mathbf{r} \quad \text{Electric field effect}$$


- DC Stark Effect (slow-varying approximation only holds for Wannier excitons)

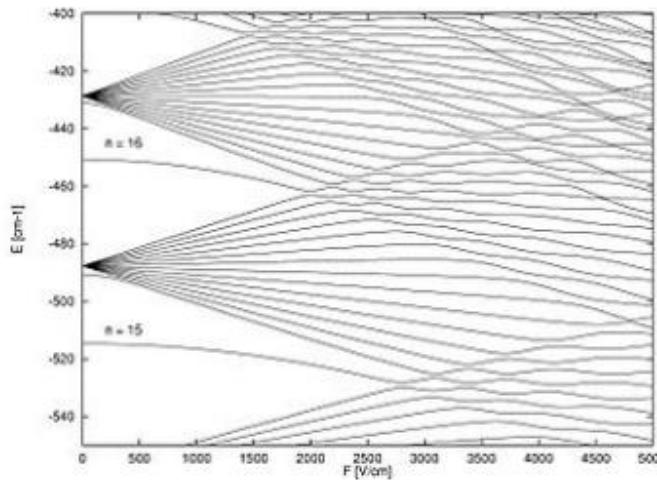
$$U(\mathbf{r}_e) = e\mathbf{F} \cdot \mathbf{r}_e - \frac{e^2}{4\pi\epsilon_r(\mathbf{r}_e - \mathbf{r}_h)} \quad \text{Coulomb+Electric field}$$

- Quantum confined Stark effect (QCSE) Coulomb+Electric field+QW

$$U(\mathbf{r}_e) = e\mathbf{F} \cdot \mathbf{r}_e - \frac{e^2}{4\pi\epsilon_r(\mathbf{r}_e - \mathbf{r}_h)} + V_e(\mathbf{r}_e)$$



Stark splitting & Stark shifting


- Stark effect جدا شدن و شیفت کردن خطوط طیفی از اتمها و مولکولها بدلیل حضور یک میدان الکتریکی می باشد.
- بطور کلی یکی از اثرات stark splitting و stark shifting اینست که اثر اولی در میدان الکتریکی خطی و اثر دومی در میدان درجه دوم می باشد.
- را با روش‌های مکانیک کوانتومی بطور کامل می توان تشریح کرد.

Stark Effect

- Stark splitting

- Stark shifting

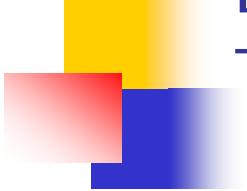
Effective mass approximation in Two-Particle Representation

- Since $U(r)$ is in general a function of both electron and hole, it's more convenient to combine two single-particle equations of motion for electron and hole together.
- Effective-mass equation for electrons:

$$\left[-\frac{\hbar^2}{2m_e^*} \nabla_e^2 + U_e(\mathbf{r}_e) \right] \phi_e(\mathbf{r}_e) = [E_e - E_{en}(\mathbf{k} = 0)] \phi_e(\mathbf{r}_e)$$

Effective-mass equation for holes:

$$\left[-\frac{\hbar^2}{2m_h^*} \nabla_h^2 + U_h(\mathbf{r}_h) \right] \phi_h(\mathbf{r}_h) = [E_h - E_{hn}(\mathbf{k} = 0)] \phi_h(\mathbf{r}_h)$$

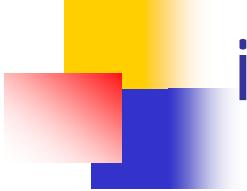

Add them together \rightarrow

$$\left[-\frac{\hbar^2}{2m_e^*} \nabla_e^2 - \frac{\hbar^2}{2m_h^*} \nabla_h^2 + U_e(\mathbf{r}_e) + U_h(\mathbf{r}_h) \right] \Phi(\mathbf{r}_e, \mathbf{r}_h) = [E - E_g] \Phi(\mathbf{r}_e, \mathbf{r}_h)$$

where $\Phi(\mathbf{r}_e, \mathbf{r}_h) = \sum_{k_e, k_h} B(\mathbf{k}_e, \mathbf{k}_h) \phi_{e, k_e}(\mathbf{r}_e) \phi_{h, k_h}(\mathbf{r}_h)$ and $E = E_h + E_e$

$$\Psi(\mathbf{r}) = \phi(\mathbf{r})u(\mathbf{r})$$

original wavefunction is $\Psi(\mathbf{r}_e, \mathbf{r}_h) = \sum_{k_e, k_h} B(\mathbf{k}_e, \mathbf{k}_h) \phi_{e, k_e}(\mathbf{r}_e) \phi_{h, k_h}(\mathbf{r}_h) u_{c, k_e}(\mathbf{r}_e) u_{v, k_h}(\mathbf{r}_h)$

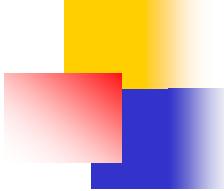

Effective mass approximation in Two-Particle Representation (cont.)

$$\Phi(\mathbf{r}_e, \mathbf{r}_h) = \sum_{\mathbf{k}_e, \mathbf{k}_h} B(\mathbf{k}_e, \mathbf{k}_h) \phi_{e, \mathbf{k}_e}(\mathbf{r}_e) \phi_{h, \mathbf{k}_h}(\mathbf{r}_h)$$

can also be written in the expansion of plane wave modes of \mathbf{k}_e and \mathbf{k}_h as follows.

$$\Phi(\mathbf{r}_e, \mathbf{r}_h) = \sum_{\mathbf{k}_e, \mathbf{k}_h} A(\mathbf{k}_e, \mathbf{k}_h) \frac{e^{i\mathbf{k}_e \cdot \mathbf{r}_e}}{\sqrt{V}} \frac{e^{i\mathbf{k}_h \cdot \mathbf{r}_h}}{\sqrt{V}}$$

- In the path of generalizing single-particle effective mass equation to two-particle effective mass equation, we didn't make new approximations.



Validity of Slowly-Varying Approximation in two-particle representation

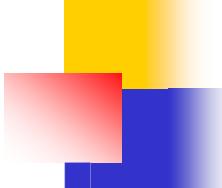
- Franz-Keldysh Effect

$$U(\mathbf{r}_e, \mathbf{r}_h) = e \mathbf{F} \cdot (\mathbf{r}_e - \mathbf{r}_h) \quad e = -/e/$$

For 5V applied voltage, there is 500kV/cm electric field across 0.1μm active region. The variation of electric field across a lattice site is 500kV/cm x 5.6Å ~ 0.028V which gives an energy variation of 0.028eV for an electron.

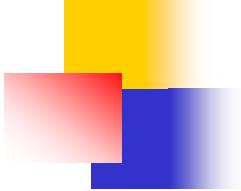
Excitons

- The effective-mass equation for an electron-hole pair is:


$$\left[-\frac{\hbar^2}{2m_e^*} \nabla_e^2 - \frac{\hbar^2}{2m_h^*} \nabla_h^2 + \underline{U_e(r_e) + U_h(r_h)} \right] \Phi(\mathbf{r}_e, \mathbf{r}_h) = [E - E_g] \Phi(\mathbf{r}_e, \mathbf{r}_h)$$

$$\text{where } U_e(\mathbf{r}_e) + U_h(\mathbf{r}_h) = \frac{1}{2} \left\{ \frac{1}{N_e N_h} \sum_{i,j} \left[\frac{-e^2}{4\pi\epsilon_r |\mathbf{r}_{e,i} - \mathbf{r}_{h,j}|} \right] \right\}$$

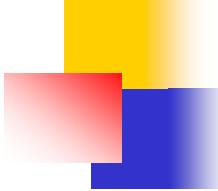

(remember to put a factor 1/2 because of pair interaction)


We have to sum over all possible interactions between electrons and holes. But if the carrier density is low enough, we can neglect the contribution from the rest of the electrons and holes and consider only bare Coulomb interaction, that is:

$$U_e(\mathbf{r}_e) + U_h(\mathbf{r}_h) \approx \frac{-e^2}{4\pi\epsilon_r |\mathbf{r}_e - \mathbf{r}_h|}$$

Interaction

*Effective-mass equation for Excitons


- With the bare Coulomb interaction between electron and hole, we have the effective-mass equation for an exciton as follows.

$$\left[-\frac{\hbar^2}{2m_e^*} \nabla_e^2 - \frac{\hbar^2}{2m_h^*} \nabla_h^2 - \frac{e^2}{4\pi\epsilon_r / |\mathbf{r}_e - \mathbf{r}_h|} \right] \Phi(\mathbf{r}_e, \mathbf{r}_h) = [E - E_g] \Phi(\mathbf{r}_e, \mathbf{r}_h)$$

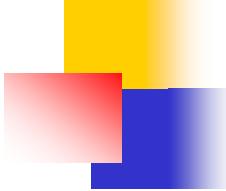
Any central-force problem (i.e. the potential is a function of relative coordinate between two particles) can be separated into center-of-mass motion and relative motion.

$$\text{Relative coordinate: } \mathbf{r} = \mathbf{r}_e - \mathbf{r}_h \quad \text{Center of mass: } \mathbf{R} = \frac{m_e^* \mathbf{r}_e + m_h^* \mathbf{r}_h}{m_e^* + m_h^*}$$

$$\Phi(\mathbf{r}_e, \mathbf{r}_h) = \Phi(\mathbf{R}, \mathbf{r})$$

Center-of-mass motion and Relative motion

- Effective-mass equation in two-particle representation for any central-force problem can be rewritten as follows.


$$\left[-\frac{\hbar^2}{2M} \nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{2m_r} \nabla_{\mathbf{r}}^2 + U(\mathbf{r}) \right] \Phi(\mathbf{R}, \mathbf{r}) = (E - E_g) \Phi(\mathbf{R}, \mathbf{r})$$

- Center-of-mass motion is a free-running solution:

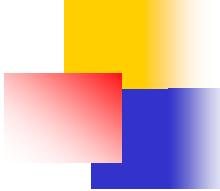
$$\Phi(\mathbf{R}, \mathbf{r}) = \frac{e^{i\mathbf{K} \cdot \mathbf{R}}}{\sqrt{V}} \varphi(\mathbf{r})$$

$$\left[-\frac{\hbar^2}{2m_r} \nabla_{\mathbf{r}}^2 + U(\mathbf{r}) \right] \varphi(\mathbf{r}) = \xi \varphi(\mathbf{r})$$

$$\xi = E - E_g - \frac{\hbar^2 K^2}{2M}$$

*Solutions for Excitons

- Same as hydrogen atoms (3D or 2D)
- Exciton Bohr Radius and Rydberg energy


$$\text{شعاع بور} \quad a_B \equiv \frac{4\pi\epsilon_r \hbar^2}{m_r e^2} \quad R_y = \frac{m_r e^4}{2\hbar^2 (4\pi\epsilon_r)^2}$$

Energy levels: bound states and continuum

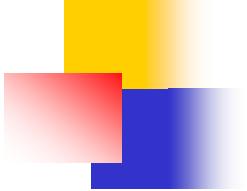
$$\text{For bound states (3D):} \quad E_n = -\frac{R_y}{n^2}$$

$$\text{For bound states (2D):} \quad E_n = -\frac{R_y}{(n-1/2)^2}$$

- Ionization energy for ground state exciton in 2D case is 4 times larger than it is in 3D case. Therefore in QW, it's easier to form bound exciton states.

Energy of an Orbital

Two factors control the energy of an orbital for most atoms: the size of the orbital and its shape.

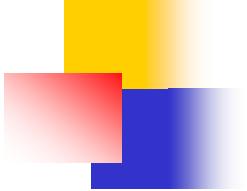

An atomic orbital is a mathematical function that describes the wave-like behavior of either one electron or a pair of electrons in an atom

تابع موج اکسیتون ψ را در یک ساختار نیمه رسانا می توان به صورت یک بسته موج در نظر گرفت که ترکیبی خطی از توابع موج بلوخ الکترون و حفره است.

$$\psi(r_e, r_h) = \sum_{k_e, k_h} \Phi(k_e, k_h) \phi_{ck_e}(r_e) \phi_{vk_h}(r_h) = \sum_{k_e, k_h} \Phi(k_e, k_h) u_{ck_e}(r_e) e^{ik_e \cdot r_e} u_{vk_h}(r_h) e^{ik_h \cdot r_h}$$

که $\Phi(k_e, k_h)$ ضریب بسط است و $\phi_{ck_e}(r_e)$ تابع موج بلوخ یک الکترون در نوار رسانش با بردار موج k_e در مکان r_e می باشد به طور مشابه $\phi_{vk_h}(r_h)$ تابع موج بلوخ برای یک حفره در نوار ظرفیت با بردار موج k_h در مکان r_h می باشند u_{cv} قسمت اتمی توابع بلوخ می باشد که در $k_h = k_e = 0$ تابع موج به شکل زیر در می آید:

$$\psi(r_e, r_h) \cong u_{c0} u_{v0} \sum_{k_e, k_h} \Phi(k_e, k_h) e^{ik_e \cdot r_e} e^{ik_h \cdot r_h} \cong u_{c0} u_{v0} \Phi(r_e, r_h)$$

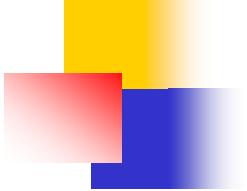


تابع پوش اکسیتون می باشد که با رابطه زیر تعریف می شود

$$\Phi(r_e, r_h) \equiv \sum_{k_e, k_h} \Phi(k_e, k_h) e^{ik_e \cdot r_e} e^{ik_h \cdot r_h}$$

تابع پوش اکسیتون حرکت نسبی سیستم الکترون-حفره را در مقیاسی بزرگتر از فواصل اتمی توصیف می کند و در نتیجه از معادله شرودینگر دو ذره ای تبعیت خواهد نمود

$$\left[-\frac{\hbar^2}{2m_e} \nabla_e^2 - \frac{\hbar^2}{2m_h} \nabla_h^2 - \frac{e^2}{4\pi\epsilon_0 |r_e - r_h|} \right] \Phi = E\Phi$$



این معادله مشابه با معادلات اتم هیدروژن است در نتیجه از شیوه‌ی مشابه با اتم هیدروژن برای حل آن استفاده می‌کنیم. روش حل به این شرح است که معادله‌ی شرودینگر را به دو بخش مختصات حرکت نسبی و مرکز جرم تبدیل می‌نماییم که بر این اساس تعاریف زیر از r فاصله‌ی نسبی و R بردار مرکز جرم ارائه می‌شود.

$$r = r_e - r_h \quad R = \frac{m_e r_e + m_h r_h}{m_e m_h}$$

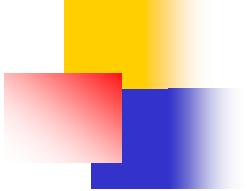
و تابع پوش اکسیتون را هم بر حسب توابع موج مجزای $\phi(r)$ و $g(r)$ می‌نویسیم

$$\Phi(R, r) = g(R)\phi(r)$$

با وارد کردن این توابع موج تفکیک شده در معادله‌ی شرودینگر داریم

$$[-\frac{\hbar^2}{2M}\nabla_R^2 - \frac{\hbar^2}{2\mu}\nabla_r^2 - \frac{e^2}{4\pi\epsilon_0 r}]g(R)\phi(r) = Eg(R)\phi(r)$$

که در آن $\mu = \frac{m_e m_h}{m_e + m_h}$ جرم کل الکترون و حفره و $M = m_e + m_h$ جرم کاهیده می‌باشد و

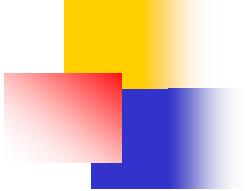

$$\nabla_R^2 = \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} \quad \nabla_r^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

مشخص کننده \hat{e}_i میباشد و $\hat{r} = x\hat{e}_x + y\hat{e}_y + z\hat{e}_z$ و $\hat{R} = \hat{X}\hat{e}_X + \hat{Y}\hat{e}_Y + \hat{Z}\hat{e}_Z$ که بردار واحد در جهت \mathbf{i} است. با تعیین $E = E_r + E_h$ داریم

$$\left[-\frac{\hbar^2}{2M} \frac{\nabla_R^2 g(R)}{g(R)} - \frac{\hbar^2}{2\mu} \frac{\nabla_r^2 \phi(r)}{\phi(r)} - \frac{e^2}{4\pi\epsilon_0 r} \right] = E_R + E_r$$

چون \mathbf{r} و \mathbf{R} دو متغیر مستقل اند می توان معادلات مربوط به آنها را از یکدیگر جدا کرد که معادله‌ی حرکت مرکز جرم به صورت زیر می باشد.

$$\left[-\frac{\hbar^2}{2M} \frac{\nabla_R^2 g(R)}{g(R)} \right] = E_R$$

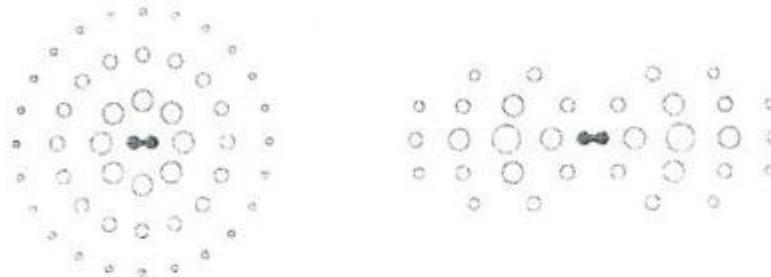

و جواب معادله مرکز جرم به صورت

$$g(R) = \exp i(k_c \cdot R)$$

می باشد که عدد موج مرکز جرم به صورت $k_c^2 = \frac{2ME_R}{\hbar^2}$ تعریف می شود .

معادله حرکت نسبی نیز که به صورت زیر می باشد به معادله وانیر مشهور است :

$$\left[-\frac{\hbar^2}{2\mu} \frac{\nabla_r^2 \phi(r)}{\phi(r)} - \frac{e^2}{4\pi\epsilon_0 r} \right] = E_r$$


جزئیات حل را بیان نمی کنیم و نهایتا داریم

$$E_B^{3D} = E_r = -\frac{\mu e^4}{32\pi^2 \hbar^2 \varepsilon^2} \left(\frac{1}{n^2}\right) = -\frac{R}{n^2}$$

که R انرژی موثر ریدبرگ می باشد . رابطه ی انرژی موثر ریدبرگ را بر حسب شاع بوهر اکسیتون هم می توان نوشت که از این طریق مقدار شاع بوهر نیز تعیین می شود :

$$R = \frac{\mu e^4}{32\pi^2 \hbar^2 \varepsilon^2} = \frac{e^2}{4\pi \hbar a_B^2} = \frac{\hbar^2}{2\mu a_B^2} \Rightarrow a_B = \frac{4\pi \varepsilon^2 \hbar^2}{\mu e^2}$$

در مشابهت با طیف سنجی اتمی معمول است که وقتی $l=0$ از اکسیتون را شبه s و وقتی $l=1$ باشد آن را p مانند بخوانیم. شکل زیر نمایشی از اکسیتونهای شبه s و شبه p را نشان می دهد :

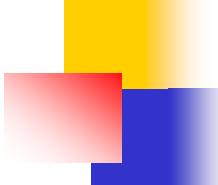
(2)

(1)

(1) : اکسیتون با تابع موج حفره p مانند ، تابع موج الکترون s مانند و تابع پوش s مانند

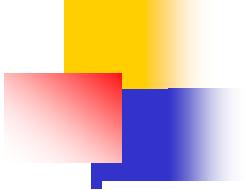
(2) : اکسیتون با تابع موج حفره p مانند ، تابع موج الکترون s مانند و تابع پوش p مانند

در شکل زیر، ترازهای انرژی اکسیتون برای n های مختلف ترسیم شده، همانطوریکه مشخص است تمامی ترازهای اکسیتونی در گاف ممنوعه تشکیل شده اند. شکل دوم منحنی پاشیدگی اکسیتون را برای ترازهای مختلف نمایش می دهد.


هر چهار n کمتر باشد اکسیتون محدود تو خواهد بود و انرژی بستگی بزرگتر و شعاع بوهر کوچکتری خواهد داشت.

جدول زیر انرژی بستگی اکسیتون و شعاع آن را برای تعدادی از نیمه رساناهای گروه های ۵-۳ و ۲-۶ نمایش داده است.

crystal	E _g (ev)	R(mev)	a _B (nm)
GaN	3.5	23	3.1
ZnSe	2.8	20	4.5
CdS	2.6	28	2.7
ZnTe	2.4	13	5.5
CdSe	1.8	15	5.4
CdTe	1.6	12	6.7
GaAs	1.5	4.2	13
InP	1.4	4.8	12
GaSb	0.8	2.0	23
InSb	0.2	0.4	100


$$a_B \equiv \frac{4\pi\epsilon_r \hbar^2}{m_r e^2} \quad R_y = \frac{m_r e^4}{2\hbar^2 (4\pi\epsilon_r)^2}$$

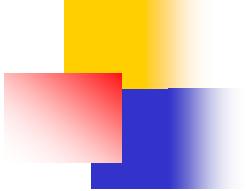
نکته جالبی از میان این اعداد حاصل می شود و آن اینکه هنگامیکه انرژی گاف نوار افزایش می یابد انرژی بستگی روند افزایشی و شعاع بوهر کاهش می یابند علت این امر آن است که با افزایش E_g ، ϵ کاهش یافته و μ افزایش می یابد که با توجه به روابط نکته بالا توجیه پذیر خواهد بود.

Design considerations for EA modulators

- Operation principle
- Contrast ratio
- Insertion loss
- Modulation efficiency
- Chirp considerations and optimization
- Packaging and Integration

مدولاتور الکتروابزوربشن با ساختار انتقال عرضی (انعکاسی) و ساختار موجبری قابل طراحی و ساخت است. برای ولتاژ اعمالی مفروض V ، ضریب انتقال نور عبارت است از:

$$T(V) = e^{-\alpha(V)L}$$


برای مدولاتور موجبری، $\alpha(V)$ حاصلضرب ثابت جذب ناحیه موجبری در عامل تمرکز نور Γ است و L طول کلی موجبر است. برای مدولاتور انتقالی عرضی، $\alpha(V)$ متوسط ثابت جذب ناحیه چاه کوانتمی چند گانه و L ضخامت کلی ناحیه MQW است. برای سهولت از تزویج و یا انعکاس در صفحات چشمپوشی می‌شود. نسبت مجازی یا روش/خاموش، عبارت

Contrast Ratio

است از:

$$ER = \frac{P_{out}(V_{on} = 0)}{P_{out}(V_{off} = V)} = \frac{T(0)}{T(V)}$$

یا بر حسب دسی بل

$$ER(\text{dB}) = 10 \log(\text{ER}) = 4.343[\alpha(V) - \alpha(0)]L$$

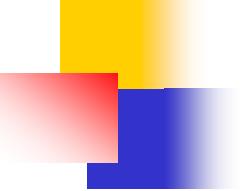
در عمل نسبت مجزایی باید بزرگ باشد که با افزایش طول کاواک قابل حصول است.

Insertion Loss

افت الحاقی IL_{on} در حالت روشن عبارت است از:

$$IL_{\text{on}} = \frac{P_{\text{in}} - P_{\text{out}}(0)}{P_{\text{in}}} = 1 - T(0) = 1 - e^{-\alpha(0)L}$$

واز آنجا که $\alpha(0)$ همواره محدود است، طول بزرگ کاواک L ، انتقالدهی $T(0)$ را به صورت نمایی کاهش می دهد. بنابراین ممکن است نسبت مجزایی بسیار بزرگی با استفاده از کاواک طولانی حاصل شود، اما در این حالت انتقال نور در حالت روشن هم به صفر می رسد. اگر $T(0) \rightarrow 0$ ، افت الحاقی به ۱۰۰٪ می رسد. طبیعتاً چنین چیزی مطلوب نیست و طراحی بهینه برای حداقل کردن نسبت مجزایی و حداقل کردن افت الحاقی لازم است.


عامل مهم دیگر در طراحی مدولاتور مذکور تغییر در ثابت جذب در واحد ولتاژ اعمالی است:

$$\frac{\Delta\alpha}{\Delta V} = \frac{\alpha(V_{off}) - \alpha(V_{on})}{\Delta V}$$

که تغییرات ولتاژ عبارت است از $\Delta V = |V_{on} - V_{off}|$. نسبت مجزایی در واحد ولتاژ اعمالی عبارت است از:

$$\frac{ER}{\Delta V} = 4.343 \frac{[\alpha(V) - \alpha(0)]L}{\Delta V} = 4.343 \frac{\Delta\alpha}{\Delta E}$$

که ΔE میدان اعمالی در امتداد ناحیه چاه کوانتوسی است. $\Delta V = \frac{\Delta V}{L}$

اثرات الکتروابزوربشن و الکترورفرکشن مولفه‌های اثر کوانتومی استارک هستند. در عمل نیازمند مدولاسیون خالص دامنه یا فاز هستیم، ولی چرب در لیزرها عامل افزایش پهنهای خط و تقریباً برابر پنج است. چرب تعریف شده در اینجا نسبت $\Delta n / \Delta k$ است که $\Delta k = \lambda_0 \Delta \alpha / 4\pi$ ثابت مجازی است. چرب در مدولاتورهای چاه کوانتومی بصورت خطی با طول موج بالای لبه جذب افزایش می‌یابد بصورتی که چرب در چاه کوانتومی $9/4$ نانومتری TE، تقریباً برابر ۱ در $\Delta \lambda = 10 \text{ nm}$ و حدود ۳ در $\Delta \lambda = 30 \text{ nm}$ برای پلاریزاسیون GaAs است و مقادیر چرب برای پلاریزاسیون TM اندکی کوچکتر هستند.