k.p Method for Electronic
Structure Calculation



* First used by Bardeen (1937) and Seitz (1940)

o Later extended by Shockley, Dresselhaus, Kittel,
and Kane

Uses:

« Obtaining analytic expressions for band
dispersion and effective masses

e Can also be used to get the band structure for
the whole zone from zone center energy gaps
and optical matrix elements



Bardeen and Seitz used it as a way of
calculating effective masses and crystal
WEFs near high-symmetry points.

Analytic expressions for band dispersion
and effective masses are obtained around
high-symmetry points.

Shockley did it for degenerate bands while
Dresselhaus and Kane included spin-orbit.



4.1 THE BLOCH TEZ{OREM AND THE k - p METHOD
FOR SIMPLE BANDS

For an electron in a periodic potential

V(r) = V(r + R) R = n,a, + n,a, + nja;,

—h?
Huy(r) = {2'" V2 V(0 [i(r) = E(k)y(r)
0
wnk(r) = ejk.runk(r)
w, (r + R) =u,,.(r) This result 1s the Bloch theorem.

The k - p method is a useful technique for analyzing the band structure
near a particular point k,, especiaily when it is near an extremum of the
band structure. Here we consider that the extremum occurs at the zone
center where Kk, = 0. This {5 a very useful case for 111V direct bandgap
semiconductors. '
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Figure 4.1. (a) GaAs band structure calculated by the pseudopotential method. (After Ref. 15.)
(b) The band structure near the band edges of the direct band gap showing the conduction (C)
heavy-hole (HH), light-hole (LH), and spin-orbit (SO) split-off bands.



Consider the generz! Schrédinger equation for an electron wave function
i, (r) in the nth band with a wave vector k,

2m

{,\p + V(l')]tﬁnk(r) = E, (k) (r) (4.1.4)

When written in terms of u,,(r), it becomes

p2 # y E h?.kz
+ —k-p+ V(r)|u,(r)= k) — Uy (T
2m,  my 0 ( ) [fandr) = | Ealk) 2 iy
When k, = 0,
ﬁ: - ﬁzk:
H, + —X plu lr) = | £(K) — Iy 1, (1)
11y =ty
H, = 2,; + F(r)

le-p = kalifign) 4y (—ih) 4 e(if)

39 < Hyu,o(r) = E,(0)u,o(r)



P
EC(O)=Eg\/ \\ ,

\\

E (k) = E.(0) + ”n‘:

c

I EgO):Wk
4.1.1 The Kk - p Theorv for a Single Band

—\u\_/
t
Here the particular band of interest, labeled n, is called class A, and /\]

perturbation theory and Lowdin’s method

class B consists of the rest of the bands, n’ # n. \fotssa

“Ic‘n?? B

time-independent perturbation theory, second order in perturbation

hik?> h h> k-p,,l|°

e = Pun i Z
2”10 m“ m{) n'#En E (O) - E (0)

E (k) = E (0) +




and the wave function to the first order in perturbation (3.5.16a):

i R K PR P,
unk(r) - ”nf_l(r) * ‘f"" by E”(O) o E”(()) ”n’[](r)

n =9

- #
— L tI”-LII‘.!U ) r}i
1_]'

v . o iker, O
l;f,zk(f} e (,_.; f{.”l((.i }
where the momentum matrix elements are defined as

P = f _H;E:O(r)p“!r'()( l') dBr
unit
cell

and u,,(r)’s are normalized as

| wio(D)te(r) dc = 5,

unit
cell



If k, is at an extremum of E,(k), then E, (k) must depend quadratically on k
near k, and p,, = 0. That is why we need to go to second-order perturbation
theory for the energy correction and only the first-order correction is needed
for the wave function. Since we set k; to 0, we have

h? 1
B = E0) = £ Dk k= 5 T (= | kky (4012

o« B a.p\ M
and
fz.’. ﬁz :?J-' :f’an + rrﬁrf’ J?! ﬁQ l
DB = bug ¥ =5 2, i 'P.. Fad s o ( ) (4.1.13)
2n; 2my .o, E(0) — E_(0) 2 \m* [ .p

where «, B8 = x, y, ar.. z. It should be noted that the D** matrix in the
quadratic form has been defined to be symmetric. The matrix D%” is the
inverse effective mass in matrix form multiplied by A%/ 2.



k'p for Two Non-degenerate Bands

Assume that we know thes_F:l thﬂ.rc: (say, k=k,) states

R o

A Using them as our basis, for any other state:

/ L ;-mf l'} 7= _Z,Hﬂ'(k}”n'ﬂ(r)

—n'

=~

E. (0 _—D-,ﬂ?k —
v(0) =
[0 find these expansion coef's, insert this into Hamiltonian

multiplying by «* (r) and integrating over a unit cell,

Zf E (0 dLd ) ! k E (k)
' + J »n' + —K- mi' 'In' — Ly ﬂr.-
- l h'[ } 2‘}”” K # m{} l] 1\
o i i
For a basis of two F0) + —E =k Py
states the solution Ty M =y
becomes this h hik? |
determinant —fe P £, (0) + —: i
> My ?"mfl

Ref: Chuang



Eigenvalues of the determinantal equation are:

an? ;
{.Er.' _En'.]f-+ :Ikl-”

1 he 1
E=—|E +E +—Kk°| ¢ >

2 ni,

Apply to CB-VB: n=c, n’=v; E =0, EG=EQ e

e

1,2 SRS

1 ﬁ?k?] 1 . 4_ﬁ1|k 2
E=—|E,+—|+=-|E:+4—k-'p_|
g £ 2 c¥
2 my 2 Mg E,(0) =Wk
Forsmall k - p,.,
; Wk R " |
E, + + -k - p_~ for the conduction band
£ 2my, E_m; |
E = { z |
h2k? k2 .
= =k - p_,| for the valence band
2m, E mg

b

Fef: Chuang



Further assuming that 7, is isotropic so that t-p_ — ip_,

yields the following isotropic reciprocal effective masses:

g I : ,
Mo g, len inverse effective mass
m, myE, tensor (definition)

2 i i
My 2 ( my | _ J°E
m, m,E, )y W ok, dk

2
FOrg « 2P lower band becomes concave down as in the top of the VB

my
-
2 P

n,

X :
So, for small bandgap se/c, i.e., £ < ‘I’ﬁ‘v ;L. ©C EE

Itis fc:und that this proportionality is roughly obeyed in the comparison
of m atk =0 in Ge and GaAs, indicating that, with similar electronic
structures the momentum matrix element does not vary much.

Ref: Callaway



Applying to CB of Ge and GaAs: L L
m.(GaAs) E,(GaAs) > ~
- == says k- p 2
m_(Ge) E (Ge) 5o |
: . . Ref: Singh
Check with experimental values: : . G |

fl 1.0 2.0 R 1
Basvpcar  E, (eV)

E, (GaAs)=1.52 eV. E,(Ge)=0.889 eV, H?;(GE) =0.041

=" .‘rn:(Ga;—‘&s) = 0.070 1n close agreement with 1ts exp. value H.i'; (GaAs)=0.0665

The calculation should be improved by taking into account the spin-orbit
interaction within the valence band (follows next).

Ref: Callaway



Kane’s model :

Four-band k'p with Spin-Orbit Interaction

»Four bands: CB, HH, LH, SO
»Double degeneracy with their spin counterparts
»Coupling to any other band is neglected

» These four bands are solved exactly using the
matrix formalism based on a convenient basis choice . _

Spin-orbit coupling is a relativistic effect
scales with the atomic number of the atom.
Thus for se/c containing heavier elements,
such as Ge, Ga, As, In, and Sb, one expects
the SO coupling to be significant, and has to
be included particularly for states near k=0.




The Schrédinger Equation for the cell-periodic fn.

H

H,

p-

2

fi

dmic

P

[ o]

g VI Xp

+ ¥(r)

The Hamiltonian near k;=0

> spin-orbit interaction

Components of the Pauli spin matrix:

=0
S O R ¢

1 =

i
0

{
o

-

0
1

yield

—_—

—

| [0

operating on the spins

] = _[1 0
ol R preserves
the spinors:
reverse the spinors eigenfn’s
[ [
gt={ &Gt=il | |o1=1
al=1 &l=-it |&al=-|

Ref: Chuang



From the original Schrodinger equation for the Bloch function,

p’ f
f + V(r) + (YW X p] o piudr) = E (k) dhu(r)

l 2m; Amic }

The Schridinger equation for the cell perindic function u,,(r) is obtained:

[ p’ fi i b _
{4 P et ——are [PV ] et O N ko)
| dmy m, e 4HI;EL |
[ I*I: l
Rt lr) = E's,a(r) \
= _ \ to be neglected
—_— 102 sy \ compared to this term
E' = E (k) — h?k%/2m, ke p -

fik is the crystal momentum or the momentum of the envelope,
whereas p is the actual linear momentum of the e which is

much greater than 7k due to « . (7) part coming from the atomic
wavefunction where most of the SO interaction actually occurs.

fi fi "
Hio(r) = [Hy+ —k - p+ —55VVXp olu,(r) =Eu,(r)

g, drnge
Ref: Chuang



Nature of the Bands Near Bandedges

In semiconductors we are pimarily interested in the
valence band and conduction band. Moreover, for
maost applications we are interested i what happens
near the top of the valence band and the bottom of
the conduction band. These states originate from the
atomic levels of the valence shell in the elements

making up the semiconductor,

IV Semiconductors

= o T, T
L |5~ 2a=2p<

[ ———
" o T o Er
ol |.'|"J.=.'1|r:'"'1'-"'3|::"

Ge 157257 2p03, 230001044200
-V Semiconductors

Cia 15~ 2332;:“35313"_1“" ”4.‘-':-11.'.! !

As 1522 2p0 32 3p03a 10 2
|

IMRECT
CONDUCTION

BAND

[Mrect
handgap

p-type l_ o

Y ALENCE
RAND

Outermost atomic levels are either s-tyvpe or p-tyvpe.

s-type

s+p (longitudinal)
. p (transverse),'

]
5 ¢ INDIRECT
. d ¥ CONDUCTION
., it RAND
[ndirec
bandgap

% 0

| Heavv Hole Band
[l Light Hale Band
I Splii-O1T Band

A= Spht-OIT Energy

Ref: Singh



Recall the s p,d-type Spherical Harmonics

£=0 (s orbit) 26+ 1 (£~ |ml)!
'r.l'r\: fj = 'y _I Ceie + |32 ml." it
el 02 ) V i [f+|MI}.’{ ) P™{ cos #) e
1
Vi
W Vi anid
f=1 (porhits)
2w ™ . 3o,
3 e ar S L[ I¥re,e)F sinadede = 1
|||:H':r.:'_ ]i _':"':‘5{’— r']-_—n'__ [}

i_

T3 x4y
Y, (& ¢)= —1|II—~'.||':|']'.. I = ”l o

r

I
'|.._

=2 (d orbits)

5 ;
Vallo) = \f 7 (Beos’8 ~ 1) = | m__(——l

- = F15 (x4iy)z
YiplBip) = F 1||;" 5y Sinfoospetie = *]r e —

[ 15 [15 (xdiy )

Baaa(0i) = | o i B0 =

Ref: Chuang



The Convenient Basis Choice and the
Corresponding Hamiltonian Matrix

We look tor the cigenvalue E' with corresponding eigenfunction

Hrﬂl[:r} = Eﬂ:rlux::ﬂ{r)
'

The band-edge functions u, (r) arc

Conduction band: [S 1 ). |S | } with corresponding eigenenergy £

Valence band: X T8 ¥Ty 12T X1 1Y |&0 with
eigenenergy £, 1

They deviate from a totally spherical function f(r) by: |
, Similarly for

R

X(x.y.2)=-X(-x,y,z); odd fn of x but even wrt y & z -

where the wave functions in each band are degenerate with respect to H,,.
HolS1) =E|IS1), HolSI>=EIS]), HolX 1) =E| X 1), HylY 1) =
EJ)Y 1), HylZ1) =E_Z 1), and so on. It is convenient to choose the basis
functions



However, it is convenient to switch to the following linear combinations:

u1>:‘fSl>

X —iY
uz>: \EF T>:‘}1_1T}
113>:Z~L>:‘}’ID~L>

X +iY
1) =|— V%T =%, )
u.j>:§_fST>

X +i¥
1) =|— E Ly=|r. L)
.u?>: ZT>:‘}I(, T>

X —iY
uﬂ>: Vé L>:‘1’1_1$>

y X - iy
lis]7, “'7—2—‘—T>,
X +1Y
s 1 | X +iY
151, l_ 7 L)
X —1Y
1Z 1), l 7 &

The first four basis
fn's are degenerate
with the last four

Fef: Chuang



Using this basis, €pansion coefficientSand the €igenenergiedare
determined from the the following 8x8 Mamiltonian Matrix

e 4———'________FP__ ur! I-L( r} g e L7 ﬂ”r i .r:'fi{ r:]
H O ; m
0 If/ﬁ , f B fi 4] r - . |
. ;m_ . 1K) = [ Hy T :In-lp p + 4!”#3?}- Xpolugr) = Eu,,lr)
J
K I.."'If E E.:z A 0 . : kP ! 0 . g B
. 0 .- 2 V2A/3 | 0
— P 3 ' /
H= . ' > assuming k = kZ
a Don't worry, this will
S T ke be relaxed later on
f o .1
P= —-i—{(S|p.|Z) Kane's parameter
- Meges & i -
where s, i oy v
| 4
A= Yl—p — —p |V SO split off energy
| 4m§c3{ I&Ip,,. ayp’“l ’

Ref: Chuang



Kane’s Hamiltonian (cont’d)
»Analysis of the matrix entries

r X(x,v.z)=-X(-x,y,z); odd fn of x but even wrt y & z, efc.
Recall -

|k<l|tf_r|l> = {llo,/l? =0

----------------------------------------------------------

= (iS || h’,,-l——l-; p+—6 b1% xﬁ1aL}
”1; L e

i \ ,
= (SLIHIS L) + —<(S | pISL) HWKPJIW-(‘FV}& p), + o (VV X p),
— T ]

/___,,
/ heo (v v Y S h
 + Sl r—y -p, |ILL} (S LIpIS L) = (SipIS) = [S(r) - VS(r)dr=0
\N. ]{ aX i
— -. \k‘ . . s

\ vanishes as this term changes sign when

T ey whereas the xtal is invariant under
this xformation

The rest of the matrix elements are in HW-1 ©

Ref: Chuang



Solutions of Kane’s Hamailtonian

Define the reference energy so that: £, = —A/3, and E, = E,

E, 0T k0
i |
_ e -2 maso
H-| Y T B
EkP VZass  —— 10\
[ oiatatal inisbatat '

' |
|

\, E' ) Decoupled
from the rest l

E{ B — E@){ B )= klPE(E' =, ;;ﬂ = ()

I
Band edge k=0

- Er=FE E =0and £'"= —A

Ref: Chuang



Solutions for small &
k*P*(E, + 2A/3)

Let E' = E, + e(k*) where e < Aand E, —, ¢ ~

Y Es:{Ex*ﬁ_)
. ? 2k 2P
let E'=0+elk®) —se=— i
b,
5 T B
II‘:LPLI
Let Ef = —ﬂ*F{kg}—r £ = —
3(E'L, + A)

Since E'= E (k) — #k*/2m,

ooy TR KPHE,+24/9)
= kY =%+ + — :
| - !
= hh E. (k) = ———
M wnl K) 2m, ——1—— HH band concave up
Siga Bip? with free-e mass @
= Ih E. (k) = -
L (k) gy AE, To l:u_a ﬁx:_ad by the LK
Hamiltonian
h2k? k2P
— l\.. B -_ — + - -
H = S0 E..tK) A 2my  3(E, + A)

Ref: Chuang



The Journey of the Eigenfunctions

For the unperturbed H, eigenfn’s at the band edge we anticipated them to be of s and p

type orbital symmetry: |S, T> :

Mrd)jz.0).|z.4)

Kane's band edge eigenfn's

Y

1,

4.

H'> |TSJ'> ks
: o T s
" } IEF T>:|FI- ; T) uip(r) = .-E' é III.I = B | JT}
i 3 A =L {2 5
} EL)_ he “Lb Perturbation: Hplr) = 7.5 f.l =k (X +1¥Y) L) + Vs |1Z 1)
X'[‘IFT. = T SG+I{_P e s
“4}: T :|111 > 3 —143 1 /2
2 ||- wple= |35 = e =] T*+!L# 1Z 4
- i 2 |
Hf,,}z IST) s e ] .
uﬁ}= A AiY ~L>=|I’;1‘L:l u(r) = ?T,} ﬁ (X —1¥) .,
V2 SEA S P I
= |5 = = (X + + —=lZ 1)
u?}= ZT)=|I‘;U T) usp(r) 5 2},' 7 [f i¥Y).) 7
—i I =T | S ke
HE_}: Xé}?¢>:|ﬁ_li> Hplr) = ETI.:I #.-3'1[:?—”"}-:}'— ﬁ;_-{,l,;



Refreshment on Addition of Angular Momenta

Spin-orbit coupling: Nonzero angular momentum state e's (i.e., other than s-
type wf's) generate a magnetic field through which they interact with the spin
of the e. Particulary important for the VB (p-like states).

Because of this coupling neither spin nor orbital angular momentum but the
total angular momentum becomes a good quantum number.

Consider two angular momentum operators which commute with each
other (J,, J,), we wish to determine the eigenstates of the total angular

momentum operator J= J,+J,

#
/ orbital  spin
| }"m> = Zamlm? ‘ Jl-'! "\F‘wl:J JE ?fﬁ2>
v .'
/ i |
f;" ]
Clebsch-Gordan There are (2J,+1) and
coefficients (2J,+1) states

corresponding to J, and J,



Refreshment on total Angular Momentum (cont’d)

A schematic
representation of
the angular
momentum states

J=L+S
JFHs=312, m=3/2,...,-3/2
JFEs=112 m=1/2,-112

Clebsch-Gordan coefficients |

for J,=1 and J,=1/2

Be ware, different
phase choices exist
as in LK

3.

f

\

3] = ] =

Ref: Singh



Extraction of Kane’s parameter from
experimental data

2
2pl R =l R,
G K (‘Er ! 31) h2k?
— e s _|_ S 1 = — =
£ { } .:Fﬂn ‘EE[-/EP 1 ﬁ.) 2?’?’!?

b2 _ mrY RE(E.+A)
( ]//'/”3
S0, by feeding three parameters from experiment, Kane's

parameter can be extracted. This parameter, P plays a key role in
any optical property regarding the over-the-band gap excitations

Ref: Chuang



General k direction

Up to now, we have assumed: k = kZ

Forageneralcase: k=/Lsinfcosex + Aksinfsined + kcos 8z

The following transformations can be used to find the basis
functions in the general coordinate system:

7]
oy F — E 1 F,_. r
i e 2 cos— e %sin— || 1
) 9
it .l:"ﬂ' F=y
N o o
s —c"‘-‘*‘-"smg e'® “cos— (| |
X cosfcecosep cosfsimed —snf || X
Y' | = —sin ¢ cos o ( ¥
& sinflcosd  sinfsing  cosf =

Ref: Chuang



k'p and Similar Band Edge Techniques

Brief Highlights
»Single- and two-band k-p

Coupling to other bands accounted perturbatively

Predicts an analytical effective mass tensor (heavier/lighter than mj)
»Kane's Hamiltonian

8 bands (CB+3 VB with spin) treated exactly

Coupling with the other bands neglected

HH band comes out with wrong sign and value (due above approximation)

No warping predicted (i.e., isotropic) for finite Kk
»Luttinger-Kohn Hamiltonian (for degenerate bands with spin-orbit)

6 VBs treated exactly; can be extended to include CBs as well
Other bands are included via Léwdin’s technique
Warping of the VBs is predicted

~Pikus-Bir Hamiltonian

Just like LK Hamiltonian, but includes the effects of strain in the xtal



Luttinger-Kohn Hamiltonian

FHYSICAL REVIEW VOLUME 97, MUMBHERE 4 FEERUARY 15, LDP55

Motion of Electrons and Holes in Perturbed Periodic Fields

J. M. Lurtnicex® Aaxp W. Ko
Bell Tolaphone Laboratories, Murray Hill, Nete Jevicr

{Received October 13, 1054)

A new method of developing an “effective-mass™ equation for electrons moving in a perturbed periodic
etructure is discussed. Thiz methed is particularly adapted to such problems 23 adse In connectlon with
imnpurity states and cyelotron resonance in semiconductors such as 30 and Ge. The resulting theory gener-
glizes the usual effective-mass treatment o the cese whers o baod minimum = not at the center of the
Brillpuin zone, and alza to the case where the band iz degenerate. The latier i panticulady striking, the
usiin] Wannler evjuation belng replaced by a sel of coupled dierential equations.,

Huy(r) = E(k)u, (r)

Begin with the total ok h
: : H oz g i ———e N} + '
Hamiltonian for the “C 2my  Amic? pff_r
cell-periodic fn's "“"--HHH Neglect
dropping their band ¢ ) ~~compared to
" u j:,l'" -~ s =
mdlces_fur IR X :
convenience: 2m [I=p+ ——a X v
fi i
H = 11 <—J
i

Ref: Chuang



Expand any cell-periodic win in terms of the k=0 basis:

A B
u (r) = Y a,(K)u(r) + Y a (k) (r)

where, from Kane's model we learned that k=0 solutions are of the form:

= 2.2 ) = i+ imn
HiglE) = |—,— | = — + 1
o 1272 ¢ 3
13 1y -1 , I'2:
Uy(r) = E'E}}:E|{X+IY)iD+VE|ZT}
.8 =1} 1 - f2 .
Usp(r) = ;*TI}= {_6“}{_ iv)t) + |} 3124
3. =3 .
HM}{I"_} = E‘ T;} = ;;-E_“X e l}/)l>
11y _ 1 \ 1|7 }
==, —}=—=|(X +1i + —=|Z 1
”Su(r) 5 2 | VZ |( 1Y) | /3 |
I =1i 9 _ i
He(r) = E T,.) = _5|{X 2 'Y}T> = ;g'"]-{\w Ref- Chuang




Also recall that at k=0, band edge fn's satisy:

H(k = 0)u,u(r) =

| A
LJ:{{!} =£P | 3 _— U
24
EJ,I:'[]} - Er, == T = —A

where E = —A/3

E Q) u;,(r)

forj = L2234

for j = 35,6

Now, apply Léwdin’'s method:

Effect of remote
bands are here

A
E('{":;q n Eﬁu’“)gf(k} =
B

Mbi; (51>

Fef: Chuang



i H_ H., . A FrET
L{';! - IEHII T T" - '”r;,r" T E -” -
1-‘=J M By - L | y#i. f Ly — E'g.-
LB s ﬁlk: 3 w
H:.'_J'" — <IIIH|H|I£HU> - Ef;{U} + "]‘m ] 3’.”- {F,J E
B

(jed,y&Ad)

, h b ;
Hj, = <“.m|fm';k '/Fﬂ”:f[w 5

where we note that 11, =0, for j,j’ €4, and LI =p? for €A and
y & A. Since y # j, adding the unperturbed part to the perturbed part in H
does not affect the results, ie., H,, = H' . We thus obtain

ﬁ?kl ﬁf

2my,

{—1 z ,l_.ﬂr,fln,,,"

g ':r?LJ [ o, B

U= {ﬁ;{{.}'} +

’?‘

Change of notation; let /' = D,

Ref: Chuang



'Df"' = EJ(U) 5.1'1' + 2 Dﬂjﬂkﬂkﬁ
a, B

h PPy + phpsy

tﬁ+2

2:‘}1” ~ mo(Ey, — E))

where Df =

For j=/, similar to single-band effective mass tensor

To write the matrix elements Luttinger parameters

explicity, define: p
2 2 T+ ﬁ:‘.. l
- he B pl pr
Ay = + 1L _—H?;="'{AG+ZHH]
° 2my,  mi % Ey—E&, 2m, 3
o T ﬁ_i.ﬂ! ) 1905, P
’ 2m My Ey— £, 2m, : 6 I B
o s, ey, i €,
4= m?‘] 5 F., — !!._'_J_ I _ZE B _6“

Ref: Chuang



In terms of Luttinger parameters, the LK Hamiltonian becomes:

P+ O
_S"
R+

0
~5* /2

complex conjugate
[

where <

8
£ B
0
ot
-v20*

hey
p=—l
2my
f’
0 - 3
2n,
h*
B =
44 I8
g = fzz}'j
nt

R

0
P-0Q

g
V3/28

()
R

5
e S
—m@R

_ ﬁzﬁ;}D J3/28T V20t —5/v2

(kZ+ K2+ Kk2)

K2+ EE— 2k
(.J. ¥ -.)

V3 (k, — ik, )k,

— 82
—v2Q
Visz2st
V2R
P+A
0

[~ V3ya(ki — k2) + i2V3 vk &, ]

vE R
V3/28
V20
— B H_;E
0

P+ A

HH
LH
LH
HH

S0
=0

Ref. Chuang



So, essentially we have solved the Hamiltonian

JFJT

Y]+
2m; (r)
where

'ur"rrrl-i(r.) o Cik riink{r}

f

— VIV X p-o

dmye”

I_gr,i”klf_l":l - fﬁ.r.l[k)urﬂlkl l"]

B

ey = ) a,(K)u,,(r)

=1

For the expansion eigenvectors and eigenvalues:

h
LK o ) :
Y. HY®a.(k) = Ea (k)

I'=1

E (k) =E



Low-Dimensional Structures

Quantum Well Superlattice Quantum Wire

Nanocrystals

Self-assembled quantum dots




Envelope Function Approximation (EFA)
(also called Effective Mass Thenry)

What's it for ?

v" Treating an additional external (slowly-varying) potential
e.d., an impurity, quantum confinement (QW), excitonic potential etc.
/

IlllI

fl,-' A periodic crystal potential Vir)

/ O 0O 0O 0O 0O 0 0 O Hor,.(T) = E, (K)ifs, . (1)
/ o 0% ek \ * Fi nk
f AN . *

{

use k?[;* LK etc.

A pencdic orvetal potential Vir) with an impurity potential Ule)

o O O @ O O
\ ﬂ_"‘ [Hy + U(r)]&(x) = Ey(r)

\Wﬁﬁr"‘ﬂ ﬁﬁﬁﬁ - .

use EFA

An impurity potential U{r)
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EFA for a Single Band

Defining H, ‘n 1{} =E (k)‘ﬁ' k)._ therefore ‘n ]{) torm a complete set

S0, one can expand jt_h_@_sulution including the perturbation as
i~ Pk r
Fi=1r J a (k)‘ﬁ'f’>
w()=(7|2| 2y o \F Ik -
= i for infinite xtal

Using the orthonormality property {(uk|i'k’> = a, 06k — k')

The perturbed equation can easily be converted to:

d’ Ic’
(E. (k) — E)a (k) + Lf - {2 ) —[{nk|U WK Ja, (k') =
n T N\

N

.
h

[ d’r Jﬁ;*fk[ r:"U{.r.}Li"u’I-;’ ( r)
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(nklU|n'K ) = j d?‘r-::_i”‘_h“"'"uijk{r}.ﬂfj__rka[rMU(r}
s Fourier xform

periodic in | A
. o , > k1 43
u¥ (D)upe(r) = ), C{nk, 'K ,G)e'C" Uy :‘[U(r)ﬁ" ‘d'r
C |
over all RLVs Inverse Fourier xform
e d 'k
) U(r) = [yt —
(nklU|n'K') = Y} C(nk, k', QYU __c : (27)
G
Approximations:
(H klU 0 k"} o« §,,  U(r)small; causes no band mixing

G i) S Hﬁk—k" U'rr) SIUWI}’ ‘u’ar}-‘ing

|'Ijh—k’—(j

Ref: Chuang



The resultant equation for @, (k) becomes

o ) d*k’
(E.(k) = E)a,(k) + [ ——=U,_ya,(K) =0
inverse \ \‘\ (2m) _ . 2
Fourier A convolution of U & F
xform \
[E{(-iV) + U(r)] F(r) = EF(r)
3pr
if we define F(r) = f.:z”{k Jelk:r Z }— (envelope function)
R
IR R )
[ yr(r) = jﬂ (K')d, (1) v g
! ! _u,(ri final approx.
The solution (@) f,f“ " ad
including U — K
hecnmgs | = J oK) Ty (1) (27)
- fil[\rj Hark::{r}

Ref: Chuang



So, EFA proceeds by replacing k — -iV in the dispersion relation

Recall that in the single-band k.p theory:

=t
. 5 afi

Hence, the envelope function is obtained by solving

F.!?' l f 7, \ 13' !
E—( ] (—z‘— (—:'.. )+U(r}
2 \m* .8 dx ., ax

F(r)=[E — E,(0)]F(r)

e, [ ’ TE | B

So within EFA, the Hamiltonian including U(r) is satisfied by

h(r) = F(r)u,, (r)

Ref: Chuang



EFA for Degenerate Bands

The procedure to obtain EFA is just like the previous case.
The main discrepancy is tt:rg_fl_'ee-xtal Hamiltonian:

Hip (F) = (K} (¥)

-

Fa

B

H=—+V(r) + H
RFIIU [r} S0
h
H_ = YV Xp-o
dm;e”
] H
2 H e (k) = ) |E(0)8, + Y D%k kgla; (k) = E(k)a,(k)
F=1 jre=1 @, B

Ref: Chuang



Qur aim is to solve in the presence of perturbation U(r)

| H + U(r)]y(r) = Ed(r)

The envelope function now picks a band index:

£
o . ] /
i (r) ?I 'LE}“F}_{;] /

where. again we replace k — -iV in the (LK) dispersion relation

i f

_ d | a
L |8+ £ 05| =i i + f:ff_r)ﬂ.._,.}ﬁ{r} - B

v
1'=1 o, 3 I'\ KXo dXg

Note that if U(r) =0, the solutions for the envelope functions reduce to

F.(r)=a,k) e™" i.e.. back to plane waves

Ref: Chuang



Consider a QW formed by two Type-| heterostructures (AlAs/GaAs/AlAs)

Conduction band
guantum well

T fl%‘“‘*éﬁ
BT | ) i e

4

- Auahiteed

>

AlAs

ENERGY
2
o
A

Well

atesal Barrier material

t"'.._ |
. “L_ Walence band
' I quantum well

Posmmion z »

Ref: Singh



QW: a sketch of what to expect

subband formation SR
dil:rnximtjﬁsjﬁf_@

-\l H

E= kit + E
HI 2n"

Conduction : Fa /
band E : e e
i § g e =5 TE=hE 4 K

_=EI e e EI 2m"
= : |
w2 b +WR i
e ,
2 x-y plang k vs. k
— — | E4(HH} O I T T
Vilence ——— | Ej(LH} - =S = Heavy hole
hand SN} Ci ; | —— L sithhands
——— B} ==—-—==>

aubbands

1 Light hole

= -'.'.".Jaua'

(yng) "3

(%ol g

n'|‘.'l|l.1|':|l' nf sEntes

g
1
[ N‘_-ul
E I
Tl of T
= ES
=
5]3
i'-'l
a5
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Application of EFA to QWs
Conduction Band: (single band EFA)

FIE}:‘[ 2
Y7 dispersion relation

]

Lik) =

~* use corresponding well/barrier effective mass

The job for EFA is to incorporate the confinement potential

= Lu'
I!U(z &E:J |T| >

L

V(z) =4
0 |
! \\H.

e

L,
3
P

-] =
Lt

I/

energy ref set to well region CB edge

Fef: Chuang



Single band EFA reads

-

-

This ordering is to ensure
the Hermiticity and the o 1 0 difr *
continuity of J, across the | J.(2) ~ ——— | " —th — f——
: : i z) 0z 0z
heterojunction
(controversial, more later...) .
C:k‘-r
Since there is no confinement on the xy plane: ¥ (r) = i ir(z)
£
w2 a 1 8 ’ vz k2 )
—-—af 2y + Fl2)( 2] = | E(k,) — ( Z
2 dz m{z}ﬁ'z'[ ) 2)¢(z (%) am(z) [

!

To solve, use finite difference, finite element or transfer matrix method ...

Ref: Chuang



Valence Band: (SO band will be neglected)

Confinement potential: I, (z) = ¢

15t destination is band-edge energies:

Note that at kx=k},=D LK Hamiltonian is diagonal,

i.e., HH LH do not mix! T
d-—F*'FF- =
—_ Define:
fﬁf- -. e

e h.- = " Tl : H’T“ ™
Bl s} = ? "'[”r‘g — 273 jﬁc‘ My = 7 — 25 use
apftg i ’ C . well/
52 ezt ____H:. . Fkg barrier
Eialk,) = ’?j}_"{ ¥y j}f:r}lk; " Y1t 2y; Vet

1 *

Fef: Chuang



So for the valence band-edge energies solve:

lr a1 3 i oy
=t = “ K o) ) = L§ ] <
[ 2 #3@{3;}.312 al2) : ]( ) ¢ }{' )

\ EFA becomes dubious

L

m,, Or My, S .

solution yields

valence band- 1(b)

Energy (meY)
in
=

. . |
| o, U oo b
edge energies & =
i i | AR, 0 :
— ¥ 8 . :
5 ci L 110 150 00
- I | Well widih (4)
T D i - —————
R B =
& |
L |'fi|l:ll ; I
< > E, = o
J‘LIIGH|_11J".5| GaAs Ftllﬁijj_’:.l"ﬁ ;i', i
-
&=

{a)

Well widihi (A)

Figure 4,18 (0} Qmuntum-well profiles tur the condwdion and caboscr bands of 5 Cuds f
AL Gy, As svatem, () Cosduction subband energies, 15, £ ..., and dck valence subband
energies Eppa Eupps - camd Ep g Eppa oo v the well widih L

i

>

J

variation of
band-edge
energies
with well
width
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Now comes valence subband dispersion relations

' T
_ 4 k :
H¥(k  k, k,= —i— ]+ V()] . F
- dz F; E;
& o
SO bands are F, F, J
neglected ' '
iP+o =8 R 0 | -S542 3R
| — 8 P-0Q 0 R | =20 +3/25
= Lk i R 0 P—0 S 143725 V20
&8 || 0 R* St P+Q | -\VZR* St/
-§* 2 20 V3/28 2R P4+ A 0
V2R* /28T V20t -s/V2 0 P+ A
Ft Ea;-z{k.wkﬂ:-")
: : £, B1/3l ks f,n2) | eiRattifyy
Envelope functions in vector form: F (r) = - o =
F.‘*- g—l_ﬁi{"":.».ﬁ‘i'-‘_r: E}l VA
F, g§_3,:(k, Kk, 2)
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e T :
QW %ﬁk(r)_fl‘E"f}—f_PE"ﬁ*f}_l_PS
. e Xk v
wavefunctions G Rk AR 3
= Zﬂy(kﬂsz]lﬁ*f”>
L S| 5 ?
where v = 2,2, — 3, and — i. Denote
ko=%k, -+ bk
We write

d

Z

-

I H;;:[:kn z)
Hl;![k:* Z)
g8 o0k, 2)
8 3,20k, 2)

L-D A

S’A;E(ku I)

— P H| 'E(kfi Ej
HL“(k,k,=—i-—~]+V 31]- o
[ { > 7 h( ) g—l;'.,?.{k.t? E}

g 3,20k, 2)

B
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Typical VB Dispersion with LK+EFA

I e — 1 R ———
| 1004 well ; S0A well |
o~ ‘2{} " ~
: b 2
E .40} E
5 | 2
e [ o
3 -80 =
kel ; B
o] B el
= 3 = |
@ 100 7
B ]| ] PP TP BRI ., P B ]| TSP SR NI SR
000 002 004 006 0.08 0.00 002 004 006 008
k, /(2nfa) k. [(2n/a)
(a) (b)

Ref: Chuang



