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Hy(r,t) = ifzg?o,lr(r, t)

3.1 SCHRODINGER EQUATION ,

h
= ——— V2 + V(r,t
2m L5, 3

. :

The probability density is defined as  p(r, [) = y*(r, t)y(r, 1)

For afree particle V(r,t) =0,
the solution is simply a plane
wave:

S

h _
j(r,t)y = —[¢* V¢ — Vi |

probability current density as Inii

the probability of finding the particle in the

. . j-‘&l” space
whole space is unity.
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The expectation value of any physical quantity is given by

<0>=3L¢wfg)owugucﬁr

Position r.. =t

op
h
Momentum p,, = —V
1

using the separation of variables:

¢(r, t) = (r) e iEA

and

f‘!
{"l V2 + V() |(r) = Ey(r)

2
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N continuity equation or the conservation of probability densjty
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qln general, any solution of the Schrodinger equation may be tOelectronic 2
constructed from the superposition of these stationary solutions:

T e
o 3T olRidts G(r,t) =Y a,(r)e Er/t 4 fczEz/rE(r) g dE (3.1.12)
@M“‘ n

For a two-particle system, we use a wave function ¢(r,r,, t) to describe
the particle 1 at r,, and particle 2 at r,, at time 7. Here we assume that the
two particles are not identical, such as those of a hydrogen atom. The

Hamiltonian 1s

p; p3
H = - + V - 1.
2m, 2m, (ry = r2) (3.1.13)
hi
P, = TVI
7]
P, =TV,

1
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e THE SQUARE WELL

3.2.1

5 5
L

2m dz -

|
: = Ep(z)

infinite Barrier Model

niw

2 .
cb,i(z) =V 7z sm(f

|

with corresponding energy and wave number

|

2\

n=123,....

h?

HTT

S

If the origin of the coordinate z = 0 is chosen at the center of the well

"

L

V(+z) = V(—2), the solution can always be put in terms of even or odd
functions by parity consideration:

([T nm
v "l_ QID(T ] n.even
b,(z) =« = A (3.2.4)
= cosl— ) n odd
. k L
By Dr. Javuwai
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o 3T olRidts
®  The complete solution for the poiential well I’(z) in a three-dimensional
space is solved from

h?
[-27;?2+ V(z)|o(x,y,z) = Eg(x,y,z) (3.2.7)
The normalized wave function is
pikx+ik,y
v(x,y,z) = JA ¢.(2) (3.2.8)
with a corresponding energy
| nir\?
E=— -2+k2+(———) 5
2m [ * Yy UL (3:2.8)
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For a GaAs/Al1,Ga,_,As quantum-well structure,

—_— - -

width is 100 A

quantized electron subband energies are

) A% a2 % . .
‘E,” — zr)r‘; (T] = H El — E],‘I‘EI,L)E],-..
where
% g ar 52 1
= ————— R _ 2 .
E, 2m’:(LJ (ml/my)L? ATy

- _ % 97,58V = 56,5
0.0665 X 100° © meV

—»—k, or ky

(D)

m’ = 0.0665m,

Therefore, we find the subband energies are

E, = 56.5,226,508.5,...(meV

H
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5T oliits | Two-Dimensional Density of States, ===

o !

7 = MZZZf(E)

rrkk

Intergration Form

dk,dk,

2 :
T/% o ?fzq,—/L.\.fzw/L_v N Lf (27)°
..,’T"k dk m"" x
= [ = — dE
b (2m)° ThL. /g

k2= kI+kl dE =k, dk,/m*

27
_ o 7 R s ;! 1 (2m*\**
YA ‘-( L } R e } }I Nyl T E.., ) to compare EY m — \/F
f 2y 'ﬂ'f[“’ . :‘F I pap( E) 272 | 42 5
where H(x) is a Heaviside step function H(x)=1for x > 0.and Hix) =0 for x <0.
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Figure 3.2. The electron density of states p,n( E) solid line for a two-dimensional quantum-wel|
structure is compared with the three-dimensional density of states p,p(E) (dashed curve).

n = deP:aD(E)f(E)

Example As a numerical cxampie, we calculate the electron density of states
for a bulk GaAs semiconductor at an energy 6.1 eV above the conduction

I

303
] (E - Ec)l/z

1 2m

22| #2

=3.69 x 10" (em™2 eV 1)

By: Dr. Jabbari
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m For a quantum well with L_ = 100 A, we estimate the density of states of the m
33T oliats first step (with E; = 56.5 meV):
@Mw‘ R
m

_ ¢ _ 1019 -3 oy
psp(E — E)) = = 2.78 X 10" (em™2 eV 1)

z

We can also estimate the carrier concentration with an energy spread of
kT = 0.026 ¢V at 300 K and obtain

n~278 % 10" % 0.026 =72 x 10" cm™3 o

One-Dimensional Density of States.

(1D) quantum wire along

L LAE)

N>y,

2
Vo,

By: Dr. Jabbari
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e o (n rﬂ:‘r h* (nr ?
o E = 2 E = ]
s Gt | Ly ) o 2mt | L,
n,n,=1273,..., and k, is a continuous variable. Using
z Sy 2 y f':x: dk.
Vn_(,n_v k. Larl"y L I 3 =D 2
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1 /| 2m* > f"ﬂ
#Lf L ! fz- ”r‘”}' E-H].-:'_EH\ VE -

¥

the 1D density of states p,p( E) is

L T 1

i pl L) = Y~
‘(lD( ) 'TTL".L}, V ,rfz Hion,
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3.2.2 Finite Barrier Mode)

i — g finite barrier quantum well, as shown in Fig. 3.3, we have T
o 3T olRidts I
oA Vo lzlz
A 0 |z 2
< o
S
1
————+V(z)|¢(z) = EP(2)
zmdz

£
Cye WS |jz] b — V(z)
$(z) = ’ 1
2% -
) L V, V%
C, cos kz FE= > —_— —
N ;

Vim, E \/ . =2
o 21— © N
//"_

h
V2m, (Vo — E) \\ N
@ = ==
h s e 0 L ‘
3 2
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o 3T olRidts é(z) = { Cysin kz |z| < 5
oA ) .
_ a(z+L/2) _
L C,e z < 5
Cl = C"?. sin Ji —j
k
at, 4 L Q= — _nﬂ’—vcot k£
e = e (L COS K — -
rity, m ) 2 "

L1

Exar. ie Consider a GaAs /Al Ga,_,As quantum well shown in Fig. 3.5.
Assume the following parameters

-

m

m* = (0.0665 + 0.0835x)m,  m¥, = (0.34 + 0.42x)m,
m, = (0.094 + 0.043x)m, E,(x) = 1.424 + 1.247x (eV)

(0 < x < 0.45, room temperature)
ALGaAs 5 \  ALGa) (As

JF - C
CI IAEC

A

Eg(x) Eg =1.424eV
L L HH) IAL .
- b v
By: Dr. Jabbari A4 vy g,




AEg(x) = 1247x (eV), AE, = (. 67AL .» and AF = 0.33AE,, where m, is
" the free electron mass.

Optoelectronic 2

a. Consider the aluminum mole fraction x = 0.3 in the barrier regions
(x = 0 in the well region) and the well width L, = 100 A. How many
bound states are there in the conduction band? How many bound
heavy-hole and light-hole subbands are there?

b. Find the lowest bound-state energies for the conduction subband (C1)
and the heavy-hole (HH1) and the light-hole (LH1) subbands for a
100-A GaAs quantum well in part (a). What are the CI-HH1 and
C1-LHI1 transition energies?

c. Assume that we define an effective well width L using an infinite
barrier model such that its ground-state energy is the same as the
energy of the first conduction subband £ in (b). What is L_4? If we
repeat the same procedure for the HH1 and the LHI1 subbands, what

are L ,?

SOLUTIONS.

me N mi, E
Well 0.0665m,  0.34m, 0.094m,  1.424 eV

Barrier (x = 0.3) 0.0916m, 0.466m, 0.107m, 1.798 eV

= 100 A, AE,=0.67AE, =0.2506eV, AE, = 0.1235 eV,

13
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[ a. The number of bound states N is determined by (N — Dw/2 <
V2mEV (L /2h) < Nm/2, V, = AE, for clectrons and A E, for holes,
AN, _respectively.

[ | L T
o5 ol&aits For electrons: Vemi AE, 751" 330k < NE N =3 th)L[lIld
. states

Nt 5 L T
For heavy holes: V2my, AE, [,” ] =525<N-— N =4 bound
S 2 states

o — L T
For light holes: vamj, AE, 5= 208 = N N =2 Z?alizsd

b. The eigenenergy E is found by searching for the root in

2zl I,
" = \J}' f f,l /\ = \Vi

my

—k tan
m L f

Iy

T — "

Y =

For electrons, /2% = 0.0665m,,, mj = 0.0916m,, and V, = 250.6 meV,

the first subband energy is

Ec, =307 meV
Similarly, Eyyy = 7.4 meV and E|, = 20.6 meV. The transition ener-
gies are
Eci_pyur = E, + E¢y + Eyy = 1462 meV
Eci.pmi =E;+ Ecy + Ep gy = 1475 meV

By: Dr. Jabbari
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“HE HARMONIC OSCILLATOR =

o 3T olRidts
oA V(z) =(K/2)z?
( 2 & X °]¢( ) = Eo(z)
— —_— 4 —2z* z) = z
= 3
2m dz - If we define
K
\ 11
&=z
now
“TY
: i
_ / s d~ N 2FE 2] i
i+ | - € |ee -
The solutions are the Hermite-Gaussian functions
[ o 1/2 .
e H ~£2/2
qbn(g) \ \/172171’1'] n(g)e
where /1, (¢) are the Hermite polynomials satistying the differential equation
(dz 26 + 20| Hy(£) = 0 [ "
. - g n n = E = +—]ﬁm n==0,1,2,3,... 15
By: Dr. Jabbari dé* d¢ . "+ 3
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The first few Hermite polynomials are

Hy(¢) =1

Hl(g) = 2‘5

H,(£) = —2 + 442

Hy(§) = —12¢ + 843

H (&) = 12 — 48£2% + 16¢°

Optoelectronic 2

Another elegant way [3] to find the solutions for the harmonic oscillator is
to use the matrix approach by defining the annihilation operator

By: Dr. Jabbari

[mMw Lp
a = —
2h 2mhw
and the creation operator
mw ip
at=/—z—
2h 2mhw
Note the relation
zp — pz =1ih

which ¢ 1 be proved using p = (&/iXd/dz) and

16
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- = 72 4 t 5 (2P —pz)
A, a‘a hZ 2mho 27'1( =)
] 2
o 3T oliits L (2D me 1
- + 5| = 5
Pz L 2.5
EF s 2.;; o E mw<z

! 1
= twlata + ——]
\ )

Problemisto find the: |N=a"a /

and noting that the Poisson bracket

I
[a,a"] =aa*—a*a = ?—h{(pz —2zp) — (20 — pz)} =1
Na =a‘aa = (aa™— 1)a = aN — a

Na*t=a%aa"=a*(a*a+ 1) =a* (N + 1)
For any eigenstate of H or N, say ¢, =|n >

(n|NIn) = {(nlaTaln) = {YlY> =2 0
> = aln)

Naln) = (aN — a)ln) = (n — 1)aln)

By: Dr. Jabbari
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atln) =vn+ 1ln+ 1)

n

(a™)
n) = Tl 10)
1 .
E,,=(n+§)hw, n=20,1,2,3,...
ald) =0
[T [ h d
0:<Zlal{]>=< —2“;!—2-}* T o d210>

z|
h d mw
2me (dz - Tz)‘b”(z)

(i R

) L= (20
(2) = (22" oo
bol z. mwh

Optoelectronic 2

18




i: A_-_i
=T

o 3T olRidts
o !

By: Dr. Jabbari

f 7

Perturbation Method

(0) '
HO 2/

small perturbing

H(U)d)(ﬂ} — E(”th’([]}

Hip = EW

H=HWY L \H
E = f:(U) e )LE“) A }\ZE(R} e e

o=@+ Ay + Ay@® 4 -
Zeroth order HOy® = E@y©

First order ~ HOy® + H'y©@ = EOy® + EDy©®
Second order H(O)W(ZJ + Hrw(l) _ E(U)w(z) s E“)II/(U + E(Z)w(ﬂ)

Optoelectronic 2

== TIME-INDEPENDENT PERTURBATION THEORY !

19
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e Zeroth-Order Solutions. It is clearly seen that the zeroth-order solutions are
- == the unperturbed solutions: E—
o137 oKt g
o ! y© = o B (3.5.9a)
E® = E® (3.5.9b)

First-Order Solutions. The first-order wave function ‘Y may be expanded
in terms of a linear combination of the unperturbed solutions:

b = Yanél (3.5.10)

m

—

_ ()
‘j).” _ ( ) e

2]

7 ¥ 77

E, = Ef+ H]

nr

H!

mn (0}
E® — EO® Pun

By: Dr. Jabbari
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Second-Order Solutions. Similarly, the second-order wave function ¢‘* can

Optoelectronic 2

Eli - be expanded in terms of the zero-order solutions: P
o 3T olRidts s
" P = T a2 o0 (3.5.17)
@ m
We find
Bt e F Bl
m¥n
Z H:H.HHI’HH (3 5 18 )
— 0— . - a
n#EN E;I)(l . - Er(??)
and
a® = Z e Sl - - Honn o m#+n
" S (BEY - ERNED - EP) (EP - EQ)Y
- (3.5.18b)
= AW A N ()]
= L pw_ gom
+ 2 Z Hr;'lka’cn _ Hr’nnH::n ()
0 0 0 (0 2 m
m+n k#n (E’(I) o E'(”))(E’(‘ d Ek )) (EJ(TO) - Er(r?))
L 20 (3.521a)
2(ED® - E(o;)z : o
E =E® 4+ | Y ) (3.5.21b
=ED 4+ H + —_—— 5.21b)
1 nn 2 E"(IO) s E,(’?) 21
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