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Fig. 1.1. Potential
energy as a function
of spatial coordinate
x. The total energy
of the particle
shown is the sum of
kinetic and potential
energies. The force
F' acting on the
particle is the
negative derivative
of the potential
energy with respect
to x.
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The postulates of quantum mechanics
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ot 2.1 The five postulates of quantum mechanics

Postulate 1
The wave function W(x, v, z, f) describes the temporal and spatial evolution of a quantum-

mechanical particle. The wave function W(x, 7) describes a particle with one degree of freedom
of motion.

Postulate 2
The product W*(x, ) W(x, 7) is the probability density function of a quantum-mechanical particle.

Y*(x, H)¥(x, ) dx 1s the probability to find the particle in the interval between x and x + dx.
Therefore,

IT*(x,r) W(x,f)dx = 1 (2.1)

— o0

Postulate 3
The wave function “W¥(x, 7r) and its derivative (& / ox) ¥W(x, ) are continuous Iin an isotropic

medium.
lim W(x.7) = W(xg.?) (2.2)
X—-—).\’(}
i —2 aplr ay = L) . (2.3)
x—)xo a.x 5x

IZXO
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‘s‘w‘ Dynan.tical variablfe in Quantum-mechanical
classical mechanics operator
X x
f(x) f(x)
B G
3 i Ox
f(p) ¢ [i i}
1 Ox
h 0
Et tal G
. i o

2
P 2 2
—— +t UM = Egpa- _h 0 Y(x.!) + Ux)¥(x.1) = _h 0 Y(x. ¢
2m 2 m axz (xs ) (x) (-xs ) i ot (xs )‘

Postulate 5
The expectation value, (i), of any dynamical variable &, is calculated from the wave function

according to

& = [¥0Ey ¥x0dr @2.11)

—0o0

By: Dr. Jabbari
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An example of a stationary wave function OptOEIECtrOH ic 2

e y(x) A
(N
é‘}' oliats y(x) = A (1 + cosx)
oA for |x| < %
v @u@d = 1.

T ' !
107

A=1/\3n

Y(x,0) = yxe

U(x)

Ulx)

expectation value of a particle

the standard deviation of any quantity, e. g. &, is defined as the $patial standard deviation of the particle on the x axis is given ‘t_)y

[<é2> B @2) 1/2,

<x2> = Tj\p*(x)xzw(x)dx = T_%

—T
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constant phase are given by

kx — ot
nondispersive media. Vph
dispersive media Var

By: Dr. Jabbari

Position and momentum space

Y(x,0) = Y(x—vpyt)

Y(x,t) =
y o dr o
const, ph & &

y _ o do
er k dk
dvyp
+ Jp—t
ph dk

Acos(kx—mt).

Optoelectronic 2

|
plane wave is propagating along the x axis without any distortion

do

dk
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i Position-space and momentum-space representation, and Fourier transform
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Ya(x)

£ Position Space Momentum Space
e NS ‘ v, (%) 0,(p)

»n nodes

E
Yolx)

Eg = I 53 e
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(I Tllustrative example: Position and momentum in the infinite square well E————
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o ! Yol(x) = \/7 005(735] [|x| < TL]

w .

Qo(p) =
i (=) =) () =)
= cos| —p|+|—— | cos p
nh n—pL/h 2h n+pL/h 2h
O,(p) = [wp)e PN dx
(
.pL .pL .pL .pL
_ 1/2 L [t T =ty o | L =) T o)) o
Jnlh |ia if
o = (m+)(/L) — (p/h) and B = —(n+ D (n/L) — (/h)
o oh o d
(p) = Jv®—— vwdr A

—00
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Operators
| )
DYNAMICAL OPERATOR REPRESENTATION
VARIABLE
Variable Position space Momentum space
.. h 0
Position X X el
1 Opy
| gl o
Potential energy U (x) U(x) i opy
N
Sx) Sx) i Opy
h 0
Momentum e ——
Px i 0Ox Px
2 2 2 2
Kinetic energy Px e LE
2m 2m 2 2m
£ [E E]
h © h ©
Total - -
o Ry B i o i o
2 2 2
Total energy Bl __m 0 +U(x) Px o yl_P_0
2m gyl 2m i Jp,
n? a2
Hy(x) = ————— y(x) + U y()
2m  dx
P’ hod
Ho(p) = L—a(p) + U-———)0(p) .
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AN, Eigenfunctions and eigenvalues };OP f(x) = 2 f(x)

o 3T olRidts

ot For example % R = . glie®
Linear operators Eop CW(X) = cEgp yi(x)
commutation law. Xp = px

Hermitian Operators hermitian operators satisfy the condition

o0 * oo * *
v cigavdueh [ i@ vadr = [ (@) &y wi(x) dx

P
I

The Dirac bracket notation
(Ve [¥) = 7 @ (20 E D(p.0) dp (¥[ep [¥) = [7 ¥ (00 op Wx0) dv

(e[ ¥2) = (¥1[eop ¥2) (Eop Wi ¥) = |7 wamEsp win ds
<‘1‘1‘§op q’z) = (2op ¥i| %)

<\Pl |‘taop |lP2> = <1PZ |‘taop |‘¥1>*

By: Dr. Jabbari



i: A_-_i
=T

o 3T olRidts
oA
(ae) = {(
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s The Heisenberg uncertainty principle m—m

; /
& — <@>) > Position—-momentum uncertainty

Momentum Space

T o)

o, = hloy

Energy — time uncertainty

| AEAt 2 h |

V(x)
|
|
|

+r»
2
Sy

The Schrodinger equation
The time-dependent Schriodinger equation

2 2
B s e DTl = -2 2w
2m axz 1 8t
T o . .
HP(xf) = _TE Y(x, 1) partial differential equation.
. 110 B ptio 5 3lulva b
By: Dr. Jabbari Yo = yee T LY = oy f)




Optoelectronic 2

The time-independent Schridinger equation

)
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oMt 2w 32 y(x) + Ux)wx) = Ewy(x) Hy(x) = Ewy(x).
(Wni‘lfm> = 0. J.joco w;wndx =0

Applications of the Schrodinger equation in nonperiodic semiconductor

structures
(a) U(X) (] oo
L U(x)
even
v, (x) = ACOSM (n =0,2,4,-- and |x| < %)
LR 0 +L2 X
and for odd-symmetry states
(n+)mx Ly ® g © v
v,(x) = Asin————— n =135 and |x|<—]|.
" L 2 E; E,
\ 4 :
y1(x) vy
E - E
(yly)=1 ‘ A = J2/L . W) ' Voo :
EO EU

2 2 | | i .
ground-state = 2h—d—2 f% cos[ an J = Ey [% cos( an ] -L/2 +L/2 -L/2 +L/2
m. dx
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-~ | ——f——— [ ———f—— [l ——
first case (E > U)
U=
y(x) = Acoskx + Bsinke
0 [ — Uy =0
k = y2mE/n? s

yi(x) = A4e"IF

Wll(x) = Acoskx + Bsinkx

WIII(x) = (ACOSkL + BsinkL)e—Kﬂl(x—L)

EA

U

E //\ /'\\ e

? N 4 :
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EO_ /\ -

[ ) SR
| I -
0 L 59

By: Dr. Jabbari

Optoelectronic 2

mm The asymmetric and symmetric finite square-shaped quantum well p—

second case (E < U)

12
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Figure 7.5 shows the numerical solutions for bound states in the conduction band and valence
band of an Alp 30Gaop.70As / GaAs square-shaped quantum well. The graph reveals that there
is only one bound state in the conduction band well for well widths smaller than approximately

50 A. Does this agree with the analytic result of Eq. (7.36)?

A T E¢
El
AEC
> l
E_(x) T
o
Eg
EO.hh AE
E A%
Y il ey *
E
B SEm— L —— W
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X - X —X

Ey Al Ga, as — (11424 +1.247 xx) eV
AE, = (2/3) AE,
AE, = (1/3) AE,

= (0.067 + 0.083 x x) m,,
& = (0.45 +0.30 x x) mg,

= (0.08 + 0.057 x x) m,,

=

me Al Ga, _As
X 1—x

" hh, Al Ga, A

*®
" \h, Al Ga, As
X 1—x

Fig. 7.5. Quantized energies of
subbands in the conduction band and
valence band of an Alv‘,GalixAs /
GaAs single quantum well structure at
room temperature. There are different
subbands for heavy holes (hh) and

light holes (lh) in the valence band.
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A Applications of the Schrodinger equation in periodic semiconductor
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oA
2 - . ht (2 2 2
Free electrons m E - 2m (kx . ky i kz )
v = AekT
The Bloch theorem
w7 U(F)=U(F+R).
Ve (F) = e X7
”nk(’ﬂ”) = Mnk(f;+fé) = unk(F+2ﬁ) = e
| | l
! 8 " . i ik-R
Y (F+R) = Wnk(r)el-
U(F) = U(F + nR) for n=1223,..
14
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P

sracss ——=The Kronig—Penney mode] ===
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energy band structure or band structure of the lattice

L Ulx)
- ~U, Fig. 8.2. Periodic
5 square well potential Introducing the abbreviations
used for the Kronig- . 5
U, O E—— Fe - Penney calculation. The a° = 2mkE / h
N o - - SR e — — F height of the barriers is 2 >
l U, and the electron pe = 2m(U0 - E) / h
energy is denoted as E.
I I I |
—C 0 +b +a X
|«—— one period —
time-independent Schrodinger equation can be written
dZ
\Ij+012\|l=0 for 0<x<bh
dx2
— Insertion of the Bloch wave function into the Schrédinger equation
2
d
;I+|32\p =0 for - <x<0.
_ dx
”— ;.
d ., d
“nk +2]k&—k2unk+(x2unk = 0 for 0<x<b
dx2
) and
2
d cq B
“nk g 2ik =k b kP 4 Buy = 0 for —c<x<0
. i dx
By: Dr. Jabbari dx
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é;:m ; L1 madlg> 5y g0 Tl g Jlost g Adolro (91 > U
B2 _ o2
L(E) = Yo P sinh (B ¢) sin (o b) + cosh (Bc) cos (a b)

- Ug-2E . 2m , 2m
. L(E) = cos(ka) | = gm Smh[\{h—z(UO‘E) c] sm(’ﬁ—zE b]

2m 2 m
L(E) = - A;J (E-Ep) + cosh (\/h—Z(UO_E) c] cos[ fh—zE bj

0
AL(E . vors
o B> )i b 1
LE = (Y — (E-E -
Allowed Allowed Kt ) 1) AE, ( ") | L(E) cos (k a) ]
band band band
PR e —— Qc’:—g AAAAAA
biiof;.e \ Forng;cll)den / b:;(}:{en\ ‘ E = Ez — AEj cos ka ‘
gap gap
0 N /

E
/ E = E, + (-1)" AE, cos ka

By: Dr. Jabbari
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st otgsts < 1% Brillouin <2 Brillouin = 3™ Brillouin »
J zone zone zone ; ; : :
o ! 1 7 Fig. 8.4. Dispersion relation
E(k) of a one-dimensional
lattice of a period a. The
dash-dotted line represents
the dispersion relation of a
free electron.
L:J ;‘t ‘\‘~
a}ﬁ "a “..,‘ ,‘
2 Vs forbidden gap
s 7
Free-electron
dispersion allowed band
s“‘--‘ ‘/ ‘
i~ forbidden gap
s allowed band
— -
0 = 2 3% Wave vector k —»
a a d
Bragg reflection condition. ilf =B
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| | Fig. 8.5. The energy of an
I | electron as a function of
: : band its wave vector (i. e.
| First | dispersion relation) in a
| Brlllouin—>‘ l ap one-dimensional periodic
' - zone < ' potential.
i t 5 5 | |
l \ / band
I : : | I
| 1 | I
| | | | £ap
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18

By: Dr. Jabbari



Optoelectronic 2

AR
T, 650

o 3T olRidts
o !
5
~ 0
-
&
53
2
o 2
&
-5
-10
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Fig. 8.6 Dispersion relation (band structure) for electrons and holes in the conduction
and valence band within the first Brillouin zone for GaAs and Si.
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A E(0K) | o (1074 €5)( B (K)
GaAs 1519 | 541 204
P [1425 | 450 | 327
Si_ [1.170 [ 4.73 636
Ge |0.744 | 477 | 235

Fundamental energy gap E_ (eV)

Fig. 8.7. Fundamental energy
gap of GaAs, InP, Si, and Ge
as a function of temperature.
The energy gap can be
approximated by a parabolic
equation with the fitting
parameters ¢ and [3.

"0 200 400 600 800 1000
Temperature 7' (K)

By: Dr. Jabbari ”



The effective mass
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Fig. 8.8. Dispersion relation
of a one-dimensional lattice

_ * o _

oA my=9.11 x 107" kg ‘ I due to the influence of the periodic potential

- - - B 2 2

F = ma a=(d/df) vg=(d/df) do/dk, g = A GE 1 dE db
h drdk h Q2 dr
E=ho.
F =t _ 5%
dr dt
hz \ Parabolic /
* \ approximation /
m — \ /
\
d°E / dk? .
\ d°F <0

By: Dr. Jabbari

dk?

Energy E

dzg -0
dk

—Tt/a 0
Wavevector k

with positive effective mass
(d2E / dk? > 0 ) near the
zone-center, and negative
effective mass ( d2E / dk 2
< 0 ) near the =zone-
boundary. close to the
zone-center, the dispersion
relation can be approxima-
ted by a parabola.



3T olsaits Generally, the effective mass is a tensor and not just a scalar
* * *
F, ) My My Wiy ay
F # * *
y - Myn Myy Mye ey
F * * & a
z Mgy Mgy My, z
2 2
g 1 ¢°E 1 0°FE Oky v dp, " dk,
y =i = — X = — —]
h  Oky ot h  Oky Oky Ot dt dr
\
I :
o 2 d°E
myy = h
| Oy Ok,
direction of the force direction of the acceleration
E
with an i1sotropic dispersion relation with a band minimum at £ =0
In the case of an isotropic semiconductor it is my* = my, ™ = m,, * %
* *
m = my

By: Dr. Jabbari
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== Approximate solutions of the Schrodinger equation ===

The WKB method

Wentzel, Kramers ‘Brillouin ii926)
The WKB approximation can be used, if the potential energy U(x) varies slowly.
Specifically, changes in U(x) should be small on the length scale of the de Broglie wavelength.

o 3T olRidts
o !

. ] 2 ol
vw = ¢4 | i1 )
In a constant potential ¢p(x) =% k x 8 e
¢(x) represents the phase of the wave & £33 o
f iz o
" 9% o
z -
) " H &
k(x) = ?\/z m[E -U(x)] for E > U ~g %
[Thi
. ] o 11
k(x) = —‘sz[v(x)—fz] = —ik(x) for E < U®). ges * "oz
hi g22 o™ om gg
gss; | "‘ry §g
o g 4 \ll { =
Slwbxo jl oy el
- J
= +1i = I
y(x) exp ( cuh | Ix k(x) dx ) (zero-order WKB) \ g
> 33
T ol Bg
Sl
< [
> ¢
xX) = exp| £1 | k(x dx) first-order WKB )
v s p( 21 ], koo ( ) i
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RY X 1
v = vm© exp - [ k(@ dr| = yn© exp - [+ 2mU - £] ds
0 0
I Il

‘ - Ulx)
Fig. 9.1 Oscillating and - I = I -~ I
exponentially decaying V)
wavefunction in the | re

: Yz vi(0)
classically allowed
region Il and disallowed [\ [\ [ Vi(lp)

region 11, respectively. JAYNA)

El
The decaying wave vV UV UV
function in region Il
can be calculated by the
WKB approximation. “l . | Ui
24
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4. Numerical Solution of the Schrodinger
Equation

For a complex W(x), the time-independent Schrodinger

equation describing may need to be solved numerically

el

1* should discretize the functions, to a set of N+ 1 equally-
spaced points, x; =Xk, and x;; =x;+hy where j=0, 1, 2,

-

25
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We wish to solve the Schrédinger equation in a region of

length L = Nhy,.

)
e
—

=n
ot

Wave function, y,(x)
Potential energy, F(x)

Jl:hn J‘hﬂ

Distance, x Distance, x
Fig. 5: (a) Sampling y(x) (b) V(x) at equally-spaced intervals of /.
At each sampling point, j, y; = y(x;) and V; = V(x)).

26
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In the finite- difference approximation:
dy(x;)/dx=[w(x;)—w(x;_ )]/ h (39)
and  dy(x))/dx =[ylx) = 200e)+ (el B (40)

Eqgn (40) into Egn (38) results 1n the matrix equation,

Hy(x;) = _”jw(xj—l) + djW(xj) - H_;‘Hllj(xj-fl) = EW(xj) (41)
The Hamiltonian is a symmetric tri-diagonal matrix, with

diagonal matrix d,=h’/mh; +V, (42)
and off-diagonal matrix u; = h’/2mh; (43)

By: Dr. Jabbari :
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As discussed for a particle of mass m in an infinite 1-D,

rectangular potential well, at boundaries yo(xo) = wa(xy) = 0.

Because the boundary conditions force the wave function to

zero at positions x = 0 and x = L, Eqn (41) may be written as

By: Dr. Jabbari ”
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(H-EDy =
(dl — 1)
— U

= 0

—u,
(dy = E)

0 0
(d;—E) -u,
—Upn_1

(dyo—E)

Optoelectronic 2

IR S=N

(44)

H = The Hamiltonian matrix and I = The identity matrix.

By: Dr. Jabbari
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Because the particle 1s not transmitted beyond the boundaries
x=0 and x=L (quantum nontransmitting boundary

problem).

When there are transmitting boundaries at positions x = 0 and

x = L, then yy(xo) # 0 and yp(xy) # 0.

In this case there is the possibility of unbound particle states

as well as sources and sinks of particle flux to consider.

By: Dr. Jabbari .
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Perturbation theory is one of the most jmportant methods for obtaining approximate solutions to Schrddinger’s equation.

First-order time-independent perturbation theory
Ho Y = EY WO unperturbed

” ]

H = H 0 -+ }b H ! perturbation on (= 1) and off (A = 0)

0+ am)y, = E,v,

Hywy, =
an expansion of £, and y, in a power series in A
B = 0 ! 2 f
lim E, = E° E, = E, + AE, + X E; + -
A—0
){E&)Wn_\“n' v, = VY, +}“l|";1 i ok \UL_F
E, =dE,/dh and vy, = dy,/dA 31

By: Dr. Jabbari
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X = A

v, |

v ()

Optoelectronic 2

> f

e

Fig. 10.1. Illustration of first-order and second-order corrections terms to the unperturbed
energy E,? and to the amplitude of the unperturbed wavefunction q!,? at a particular
position x. The parameter A is a parameter that controls the magnitude of the

perturbation; A = 0 corresponds to "no perturbation".

32
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0. 0 0.0
Oth order terms: H = F
3137 ol L ¥
oA
st order terms: H° vy, + H'\pg = E}? v, + E, ‘Ifg
o 0 L r ! s (} L f r " 0
2nd order terms: H vy, + Hvy, = E, v, + E, v, + E, ¥,

. Note that in the above three equations, HU, \p,,o, Eno, and H' are gnown.

[t is the purpose of first-order perturbation theory to find solutions for £, and ;'

‘10 Eg e 1

v, = Zjajw?-

0 0 TR § 0 0 .
H Zaj\pj + H vy, = EnZajwj + E, v, .

J J
Using
0 0 _ 0.0
H" Y a;vy; = Da;Ejvy;
J J
one obtains
0.0 0 0 0 r 0
Ya;Eiy; + Hvy, = EyYa;y; + E vy, .
J J

By: Dr. Jabbari -
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gmm Pre-multiplication of Eq. (10.15) with Vo' ¥, and integration over position space yields  mE————
o 3T olRidts

0 0 'l.,,0 0 ’
| gy Y + (W |H'|W8) = anEj + EjSp,

ol Ly =0 for m=j Iy =1 for m = j

0 0y — s
W'’ |y = 8 W’ 19, = B

f ! 0
SE==A. E, = <W3|H Wn>
0 0 .0
E, = E, + 7\‘<WH|H Wn>
Furthermore, one obtains for
) <w?n |’ w?q>
m+ n. B =
! E, — Ep

except the value of a,,—,

34
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@Mm' value of a,,_, ‘ (wﬂ + Ay, \Wg + K\P:¢> =1

Y *

o0
m = n: I w2+l2amw?nJ {\p2+k2amw%}dx = 1+3‘Lam+?\..a!:,‘,—l—?»zz:as,,,gc:@:;g = ]
oo m

0
W)
Wi

0 '
Vo | H

0 <’"
Wﬂr:q’n"'}“z 0 0
Mm+#n En*Em

35
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Example for first-order perturbation calculation

[ i I i I

0 : - :
‘.P” L UU Unper_
U(x) turbed
0 \
£ wave

__________________ -0 function
L 0
Up(—" ) Pertur-
bation
| B, -U,
U
04 Ay’ 0 Pertur-
o L U)+Ux)  bed
0 ; wave
B M | | U 0 function
—-a 0 +a b x

By: Dr. Jabbari

Fig. 10.2. Simple example of
an (/) unperturbed wave
function, (ii) a small
perturbation, and (/i) and
resulting perturbed wave
function. The first-order
correction to the energy due to
the perturbation is AL} . The
correction to the wavefunction

is Ay j,.
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;3T olKaits yi(x) = Aev
oA

K = %\/Zm(UO —ES)

—Kd

yp(x) = Al{ © Jcoskx

cos ka
k = 1 2mE8
h

y(x) = 4 e

_ g0 01 gry0) | —
E, = E® +h<wn|H\wn> Ey = EJ + ji\pSUp(x)wg dr.

2
Up 4 (e—sz
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wit | Second-order time-independent perturbation theory
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Pre-multiplication of Eq. (10.15) with wmn*, and integration over pdsition space yields
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First- and second-order correction to the energy of the nth state:

E, = E°+ x<w2\H'|1pﬂ> + 423
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First- and second-order correction to the wave function of the nth state:
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e Time-dependent perturbation theory ==
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It is important to keep in mind that in such stationary systems, nothing
observable ever happens

I{:‘O !'""“{0 f}}f“
Electric field “OFF” Electric field *ON” Electric field “ON”
(o] (e ] oo o0 [=1e] [« o]
0 0
0
E
=0 =0
n c En=0
\P(x,t<t0) = \P(x, to)

Fig. 11.1. Temporal evolution of a perturbation. The perturbation is assumed to occur
instantly at the time I,- The wavefunction at 1 = l has still the shape as wﬂ —o (1 <0).
Then, the wavefunction changes according to the perturbation, and, it is given by v, = .
The perturbation shown here is a constant electric field.

Vil ‘P(x,to)> Ept(t=t9) = (¥(x,19)|UM)| ¥ (x,19))
2m

Exin(t=1) = <‘1’(x> 1)
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method of variation of parameters (also called variation of constants) is quite powerful

o 3T olRidts ; 5
ot ¥x,0) = ), a,(0) ¥, (x,0) [HO + kH’(t)] ¥ = -~ ¥
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Ya,(OH ¥, +D a,(O)LH'Y, = ——> aa,,?(x) e —fZan(z)awﬁ,
1 1

Pre-multiplication of the remainder of the equation with \P,,”" followed by integration (recall that
<1Pm0 | IPH()) = Smr;) ylelds

Sfundamental result of time-dependent perturbation theory

d 1 e
Eam(f) = _F}bz” an(£)<lpm|H

‘P,,?>

matrix elements (Tmﬂ‘ H'| ¥,
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To simplify the solution of the system of equations, a first-order approximation for
a; (t) will be used; to do so, a;(f) is expanded into a power series of A

aj = a) +Ldj + W d} + (11.16)

where a/ = da;/d\ and o = d’a;/ d\
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o 3T olRidts expectation values

l"k r

U Ay
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This equation gives the temporal dependence of the intensity

A perturbation can result in a very selective redistribution of probabilities, that is, the wave
functions of some states may remain completely unaffected. To illustrate this, we consider the
quantity (¥, | H' | TJ:’O), in which the wave function LP}‘O (of the initially populated jth state) is
connected via the perturbation hamiltonian H' to the wave function ¥, (of the initially
unpopulated state). The quantity

w?>

1s called the fransition matrix element of the two wave functions ‘Pmﬂ and ‘Pjﬂ.

Hyj = <W%H'

Hy = 7w (o) H'(x) w(x) dx

The integrand will be an odd function and the integration yields H,," = 0.

he matrix element H,," is the source of the selection rules of atomic, nuclear or
semigonductor quantum well spectra. In such spectra some transitions are allowed (H,, # 0)
while other transitions are forbidden or disallowed (H,,;' = 0).
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=== Harmonic perturbation and Fermi’s Golden Rule =====
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Fig. 11.3. Temporal develop-
ment of intensities of wave
functions. Initially the system is
represented by a single occupied
state with energy Ej(t 0).
After a harmonic perturbation
with energy (h/21)®,, states of
energy E, *(h/2m)®, become
increasingly populated. A tran-
sition to the state with energy
E,}. T (h/2m) o, is a stimulated
upward (excitation) transition or
stimulated absorption transition.
Correspondingly, a quantum
mechanical transition to the
state with energy £, —(h/2m)®,
is a stimulated downward (de-
excitation) transition or stimula-
ted emission transition.
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_ Frequently, a transition occurs between a single state and a group of states clustered about a
oyl obadts  state m with E,,’ > E}‘O. Transitions between an impurity state and band states in semiconductors
ot are an example of such a transition. Let the cluster of states be characterized by a density of

states p(®,,) per unit of ®,,;. Assuming that the transition is an excitation transition in which the
final state energy is higher than the initial state energy, i. e., E,’ ~ E;’ + hoy, then Eq. (11.31)
becomes

Sy |+ lowy - )]

/ (% (“)mf ~ o ﬂz

It Hmj,l ?is not a strong function of the final state m, then we can take it outside of the integral.

P(©,;) dw,,;

product of twokg::tions, namely the density of states

sin? [(1/2) (mmj_mo) 1 — Amplitude o 1 sin? [L (w _— 030) ;}
my
[(172) (00, “’0)] Fig. 11.4. Density of final states é
function p (®,) and the tran- i 2
smon prcba‘Llhty function {2 (U)mj - M )il

sin2 [(1/2) (0, —@0)1]/ [ (1/2)

mj
(@, — @)t I

()
mjf
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T s Ay, = T
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: Y
Fermi’s Golden Rule
transition probability
s W 2 ;12
Wism = N ay @) = %‘Hmﬂ P(E=E;+hay)

transition from one state to another single state

Wiom = - lan@F = ZE[t] 8(E, - ;- o)
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m Exercise: Band-to-band transitions in semiconductors==

o 3T olRidts
o !
E(t) = Eguy cosm?
electromagnetic field U(x) = € EC‘ X
10! —1t
H((x) = —-eEyx (1/2)(e + € )
(a) Bulk (b) Quantum well interband (¢) Quantum well intraband

A i i Disallowed

\ transitions

E

: N Ba ol
=y L

Allowed Allowed Disallowed I h. 4

transitions transitions transitions

E i Allowed Disallowed
Y ¥ Y E transitions transitions
Y

V
A=m-n=0,2,4,... A=m-n=1,35, ...

Fig. 11.5 Allowed and disallowed optical interband and intraband transitions in bulk and
quantum well semiconductors. 53
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s = Density of states ——

o !

D 1 m*
B = —— " NE-E
ppos(E) Y Zn 2(E-E,) ( n)

Degrees of freedom Density of states

Ppos]

o« EI12

sl

Fig. 12.7. Electronic density

Ppos of states of semiconductors
= with 3, 2, 1, and O degrees
o< E” = const. of freedom for electron
K E propagation. Systems with
2, 1, and O degrees of
s freedom are referred to as
’ quantum wells, quantum
< E~1/2 wires, and quantum boxes,
] % respectively.
- [
Ppos oD
ﬂ < 8(E) ppos(£) = 28(E-E)
0 (w?,
P E"

o4
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o 3T olRidts
oA Degrees of Dispersion Density of states Effective density
freedom (kinetic energy) of states
3 E
h? 5 .4 B D 1 (2m" )2 3p 1 m kT |2
3 (bulk) E:—*(k +ky, +kZ) PDOS =——=1|—F— E—EC N, =—
ot T on? | n? ¢ V2
PV 2D m o m
2(slab) E=——(ky +ky) PDOS = —ZG(E——EC) NG~ = —ZkT
2m i Th nh

, n? 2 1D m m 1D m' kT
1 (wire E=——(k = N - (=
(wire) 2m*( x) PDOS = 2E—FE) c 2

0(box) - PHOS = 28(E - Ec) Ng =2
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Table 12.1 Density of states for semiconductor with 3, 2, 1, and 0 degrees of freedom for
propagation of electrons. The dispersion relations are assumed to be parabolic. The formulas can
be applied to anisotropic semiconductors if the effective mass m™* is replaced by the density-of-
states effective mass mpos®. If the semiconductor has a number of M, equivalent minima, the
corresponding density of states must be multiplied by M,. The bottom of the band is denoted as
E¢ and o(E) is the step-function.
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Just for your attention

Fig. 12.1. Parabolic dispersion
relation with a k-space interval
Ak, and a corresponding energy
interval AE = (0E/dk,) Ak,.

E = const.

Fig. 12.2. Constant energy
surface for a single-valley,
isotropic band.

Fig. 12.4. Ellipsoidal con-
stant energy surface with a
weakly curved dispersion
relation along the £, axis
and strongly curved dis-
persion along the &, and k.
axis.
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o 3T olRidts
o !
| [111]
Fig. 12.5. Constant energy surface
for the L-point of the Brillouin
zone. The band structure consists
of eight equivalent rotational
ellipsoids.
[1T71]
[1T1]
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