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Basic Components and the Role of Feedback
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Unlike Op-Amp laser has g=g(constant)
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Basic Properties of Lasers

The ‘‘brightness,’’ defined as the amount of output power per
unit frequency, determines the spectral purity of the source.

Wavelength and Energy
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Introduction to Matter and Bonds

Classification of Matter

Gases

Liquids and Liquid Crystals

Solids
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Bonding and the Periodic Table
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Introduction to Bands and Transitions

Intuitive Origin of Bands
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The total energy of a conduction electron can be written as
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An elementary band diagram for gallium arsenide
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Indirect Bands, Light and Heavy Hole Bands
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Introduction to Band Edge Diagrams
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Introduction to 
Laser Dynamics
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|À¯Ê» ¾ÌÌ e Y� ½Á�f°·Y Á ½ÂeÂ§ ¾Ì]�À¯ �|¿Y ºf¿YÂ¯ ®Ì¿Z°»®¼¯ Ä] µÂ�¯Z» cÓ{Z »
 |Ì�� w�¿ cÓ{Z » ½YÂe Ê» cÓ{Z » ¾ËY®¼¯ Ä]

The rate equations describe how the gain, pump, feedback, and output 

couplermechanisms affect the carrier and photon concentration in a device.

|�Z] Ê» Ã�Æ] Z]�Ìv» ®Ë �{ ½Á�f°·Y Á ½ÂeÂ§ ¾Ì]�À¯�|¿Y Ã|ÀÀ¯ ¾Ì »  w�¿ cÓ{Z »

The photon rate equation describes the effects of the output coupler 

and feedback mechanism through a relaxation term incorporating the cavity 
lifetime.
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Introduction to the
Rate Equations

{{�³ Ê» Ã�Ì£ Á ½ÂeÂ§ [~m Á ¶Ì�³ ¶Ì^« �Y É{| f» ÉZÅ Ã|Ë|a {ZnËY \^� Ã{Z» Á �Â¿�À¯ �|¿Y
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�ZÌ¿ {�Â»ÊËZÅ�f»Y�Za �Y É{Y| e:Density of photons  (the number of photons 
per cm3),

the density of electrons

pump-current number density

A second set of equations uses variables describing the optical power P (W) and current I (A).
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Basic principle: Rapid change of state of an electron
Must go from high energy state to lower energy state

Loss of energy must appear somewhere

Emitted in form of light

Lattice vibrations

Electron can be bound to a particular atom or molecule or be free (part 
of electron “gas”), as in most conductors

Two types of emission of light
Spontaneous

Stimulated
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Light production: spontaneous

Normal case

Electron in high energy state is unstable

Spontaneously returns to lower state

Occurs in a few picoseconds

Photon emitted in process

Direction, phase random

Energy of photon determined by transition 
undergone by electron
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Light production: stimulated

Electron in high energy metastable state

Can remain there for a “long” time (~microseconds)

Can fall back spontaneously, or be “stimulated” to
emit its energy by another photon

Incident photon must have correct energy

Newly emitted photon will have same wavelength, phase, 
and direction as incident (stimulating) photon
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The Simplest Rate Equations
κΨθϣ ϩΪϨϨ̯ήϴϴϐΗ Νϭί ΎϬϠϣΎΣ έΩ ϥϭέΩ 
ϪϴΣΎϧ ϝΎόϓ ̮Ҩ έΰϴϟ

We assume

intrinsic semiconductor (n=p)

two levels

Generation

pumping

absorption

Recombination

stimulated

spontaneous
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{{�³ Ê» {ZnËY �Â¿ c|�®ËªË�� �Y ZË Á  {Â�Ê»ªË��e ½M Ä] ��Ì· ÊËÓZ] �Y Ä¯ Ê¿ZË�m��Âe `¼a

ZË�ËY�§Y
�ÅZ¯

�¿ ZÆ¿Á�f°·Yd^
Y| e Z]�°�{
{�Y{ ZÆ¿ÂeÂ§
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Optical Confinement Factor
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The Pump Term and the Internal 
Quantum Efficiency

The number of electron–hole pairs that contribute to the photon emission process 
in each unit of volume (cm3) of the active region in each second can be related to 
the bias current I by

Internal Quantum Efficiency
represents the
fraction of terminal
current I that
generates carriers in
the active region

provides the actual current absorbed in the active region
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Pumping (whether optical or electrical) 
initiates laser action when the carrier
population reaches the ‘‘threshold’’
density (to be discussed later). 

Without carrier recombination, the 
pump would continuously increase the 
carrier population according to
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ºË�ÁMd�|] Y� �Ë� �]YÁ� Ä¯d�Y ¾ËY ¥|Å hv] Ê³|À¯Y�a �Y É�Ì³Â¸m dÆm
 )kÂ» Á ZÆ¸»Zu w�¿ cÓ{Z » (
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µZu Ä¯
¾ËY Ê´¼Å 
ZÅ�f»Y�Za
tÌ�Âe
Ã{Y{
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Recombination 
Terms

radiative

nonradiative

produces photons usually as spontaneous emission

radiative
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Nonradiative recombination

occurs primarily through phonon processes by material with indirect bandgap

The result is heat
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Monomolecular (nonradiative)

bimolecular (radiative)

Auger recombination (nonradiative)

produces spontaneous emission

occurs when carriers transfer their energy to other carriers, which
interact with phonons to return to an equilibrium condition

Auger recombination is important for lasers (such as InGaAsP) with emission 
wavelengths larger than 1 mm (small bandgap)

Main process in the Laser   
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Spontaneous Emission Term

Of those photons that enter the waveguide, a 
fraction of them have exactly the right 
frequency to match that of the lasing mode
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The Optical Loss Term

All of the optical losses
contribute to an overall
relaxation time

called the cavity lifetime

which shows
that the initial
photon density
decays
exponentially
as the carriers
are lost
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mirror loss ɲm

as distributed along the length of the cavity

a partial differential equation with boundary conditions at the mirrors must be solved

result

both mirrors have the same power reflectivity R (0.34 for GaAs).

The loss per mirror must be

reciprocal of the cavity lifetime becomes
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Stimulated Emission—Absorption and Gain

types of gain

Temporal Gain

Single Pass Gain

Material Gain

Material Transparency

Introduction to the Energy Dependence of Gain

The CB electrons and VB holes produce ‘‘gain’’ in the sense that incident photons with the 
proper wavelength can stimulate carrier recombination and thereby produce more photons 
with the same characteristics as the incident ones.

Temporal Gain
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The word ‘‘stimulated’’ means that a photon must be incident on the material before
either stimulated emission or absorption can proceed
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Single Pass Gain
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Material Gain
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Material Transparency

G=1. The material gain in this case is g=0
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Introduction to the Energy Dependence of Gain
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The Power–Current Curves

Photon Density versus Pump-Current Number Density
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steady state

Below Lasing Threshold
The phrase ‘‘below lasing threshold’’ implies that the laser has insufficient gain to
support oscillation

Ω�Y|ËZa d·Zu �

g=0
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Above Lasing Threshold

energy of each photon

wavelength in vacuum

photons striking a single mirror must be
proportional to ɶ/2 and for both mirrors

modal volume

mirror time constant is
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Case 1 P–I Below Threshold

We have:

Next life time is:
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Case 2 P–I Above Threshold

�Ë� {�YÂ» ¾f§�³ ��¿ �{ Z]:
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Power versus Voltage

Some Comments on Gain
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Material trancparency

ȲȮġȳɌɱġɰ؅ɗȳΧġȶȆ́ ɐɲȄġġɼġтΨȯɳ΁ȄȳˍġġɼġɰɼȯȉġȲȮġȳɌɱġɰ؅ɗȳΧġɻɳкǵġȆɸ

Trancparency occur when
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Relations for Cavity Lifetime, Reflectances and Internal
Loss

R=power Reflectances
mirror mirror

Lock at round trip

Relation between P1 and P2 with only material gain and internal loss

the cavity lifetime

internal losses

No reflection facet am=0
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where the net gain

So we have
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For steady state the initial power Po must be the same as the final power

which says that the gain must equal the loss at steady state.
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Modulation Bandwidth
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Small Signal Analysis

To demonstrate the equation for resonance

‘‘bar’ ‘‘average’

Rate and
Wave
Equation

For steady-state 
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Drop the second-order nonlinear terms such as gn, n2; this procedure also removes
terms such as e(2iw). Then cancel the exponentials e(iw) from both sides
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define

obtain the transfer function
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Defined the response function

peak of the 
response 
function

resonant frequency

Above threshold
ÄnÌf¿
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Classical 
Electromagnetic

and Lasers
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Maxwell’s Equations and Related Quantities

J
É
D
H
B

P

displacement field

electric field

magnetic field

Magnetic induction

current density

Charge

1- find a complex
wave vector kn to describe gain/absorption 
and refractive index

Maxwell’s 
equations

2-find the Poynting
vector for electromagnetic power flow

3-develop scattering and linear systems theory
for optical devices

4-develop the theory of optical waveguides
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Ϫ ϥΎϣί ϭ ϥΎ̰ϣ Ζγ΍ Ϫ̯ ̶ϣ ϥ΍ϮΗ ϥ΁ ΍έ έϮτΑ ϞϘΘδϣ ί΍ ϥΎϣί ϞҨΪΒΗ Ωή̯

έ΍ΩήΑϪҨΎ̡

d

The polarization denotes the total dipole moment per 
unit volume at the position r at time t. The polarization 
and the dipole moment are related by
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Linear relation between the induced polarization and the electric field

(complex) susceptibilitypermittivity of free space

Gauss’ law

the ‘‘+’’ indicates that energy stored as polarization decreases the energy stored in

the field within a dielectric (since the sum of the two terms equals the constant free
charge).
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relation between the magnetic induction and the magnetic field

permeability of free space

material magnetization

ϻϮϤόϣί΍M
ϑήλήψϧΩΩή̴ϴϣ

magnetic fields

magnetic induction
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=0 for steady state conditions

current increases, both the magnetization and the magnetic induction also increase

Outside the magnetic material

conductivity of the material

Ohm’s law.
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Ohm’s law.
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Relation between Electric and Magnetic Fields in Vacuum

The vector

propagation direction of the wave

wave vector

We start by plane-wave:

ΎΑϩΩΎϔΘγ΍ί΍̶̰Ҩί΍ΕϻΩΎόϣϝϮδ̯Ύϣωϭήη̶ϣϢϴϨ̯
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:ºË�Y{ {Y�M ÉZ�§ ®Ë ÉY�]

Only for y-component, we can simplify the relation:
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The time derivative

Substituting
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Relation between Electric and Magnetic Fields in Dielectrics

By the same way:

real index of refraction

in vacuumin the medium
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The cross product and derivative can be performed in the same
manner as above to obtain

neglects the magnetization
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Derivation of the Wave Equation

The Wave Equation
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The Complex Wave Vector

We start by substituting a plane wave into the wave equation

electric field consists of a single traveling plane wave

�¸fz» kÂ» �Y{�] Z] ZnÀËY �{ ºË{Â] Äf§�¶^« d·Zu ÉY�] Ä¯ Y�É�Ì�» ½Z¼Å �³Y
|»M |ÅYÂyd�|] �Ë� ÄnÌf¿ ºÌÅ{ ¹Zn¿Y
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Definitions for Complex Index, Permittivity and Wave Vector

complex refractive index and the complex permittivity

{Â�Ê» Äf�Â¿�Ë|¿Y ½Á|] Ê¬Ì¬ud¼�« ÓÂ¼ »
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So real permittivity and real refractive index are related to
the real part of the susceptibility.
imaginary of the permittivity is related to both the
imaginary part of the susceptibility and the conductivity

Conductivity                    absorbs part of the electromagnetic wave

another definition

absorption and the gain

The Meaning of kn
the imaginary part of the wave vector gives the exponential decay or growth (absorption or
gain, respectively) of the traveling wave
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Approximate Expression for the Wave Vector

For simplicity

very
important
result
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Approximate Expressions for the Refractive Index and Permittivity

imaginary part ofɸ is small
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The Susceptibility and the Pump

The real part of the susceptibility leads to the index of refraction while the 
imaginary part leads to absorption or gain as can be seen from the main two 
results

The pump mechanism adds energy to the laser

It is the susceptibility that changes with pumping very similar to polarization

Adding carriers through the pump mechanism increases the number of possible dipoles



{Y�M ÃZ´�¿Y{
Ê»Ô�Y

By: Dr. Jabbari

Optoelectronic 2

94

related to the term containing the conductivity

related to the term containing the susceptibility

Next

Define the background refractive index

We see that the refractive index is smaller than the background refractive index when
the real part of the pump susceptibility is negative. 

the pump susceptibility changes the index of refraction

º6Æ»
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Mathematical 
Foundations

Linear algebra is the natural mathematical language of quantum mechanics

Hilbert spaces for vectors and operators

The Dirac notation

A Hermitian (self-adjoint) operator produces a basis set within a Hilbert space

Observables such as energy or momentum
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Vector and Hilbert Spaces

In Q.M.:
Act of observing represented by operators

Particle or system represented by vectors

Exam: ʗ ( wave funtion) or |ʗ> (Ket) represents particle moving along       axis unlike 
Movement P . Let P be an operator that  measures momentum 

z
�

Exam: Alternate statement (Average momentum)

dÌ¼¯)Quantities   (�Ë~a Ã|ÅZ�»)Observable  ({Â� Ê» Ã{Y{ �ËZ¼¿ ÊfÌ»�Å �´¸¼�®Ë ��Âe
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Basic problem in QM. is
Wave functions live in Hilbert space 
Hilbert space = vector space + Inner product

There exists basis vectors

Usually basis set   chosen to be eigen vectors 
of observable like 
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Other type of operator : unitary
converts one basis Set into another
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�+ Operators Also form a vector 
space (and Hilbert Space)
�Operators or Wae functions can 
carry the dynamics of system
�·Representations   Schrodinger 
,Heisenberg ,Interaction
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Definition of Vector Space

vector space consists 

set F(real or complex )with operator +   f, f1 , f2 in F

Scalar multiplication (SM) over the field of numbers N
ɲ, ɴ, ɶ in N
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Example:
If F represents the set of real functions but the number field consists

of complex numbers

Objects such as c1 f(x) (where c1 is complex) cannot be in the original vector
space because the function g(x)=c1f(x) has complex values.

cannot be vector space

closure cannot be
satisfied

Inner Product, Norm, and Metric

An inner product in a (real or complex) vector space F is a scalar valued function that
maps (where C is the set of complex numbers) with the properties
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The norm or ‘‘length’’ of a vector f is defined to be

A metric d( f, g) is a relation between two elements f and g of a set F such that

The metric measures the distance between two elements of the space
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έΩ̵Ύπϓ̶γΪϴϠϗ΍2R  

inner product for functions
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Example: Find the length of f(x)=x for x ɸ[-1, 1]

Kets, Bras, and Brackets for Euclidean Space

3D euclidean vector: 

Example:
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We define a ‘‘bra’’ < | to be a projection operator

Combination of projection operators and vectors as

‘‘bra’’ + ‘‘ket’’ gives the ‘‘braket’’ inner product 

to be more complicated compound objects
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Basis, Completeness, and Closure for Euclidean Space

basis set must be orthonormal and complete

Kronecker delta function

A linear combination of ‘‘N’’ orthonormal vectors B ¼ fj1i, j2i, . . . , jNig has the form

can be complex numbers
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closure (i.e., completeness) relation
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Bra projects an arbitrary  vector onto the vector

maps a vector space V into the complex numberslinear operator

The Euclidean Dual Vector Space

Euclidean vector ,the corresponding bra is the operator

‘‘dual vector space V+
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The adjoin reverses the order of operators

Exam: Assume

norm

unit vectors

the magnitude of the complex number
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Hilbert Space

A Hilbert space consists of a vector space of functions 
with a defined inner product

Hilbert Space of Functions with Discrete Basis Vectors

Functions in a set are linearly independent if for complex constants

can only be true when all of the complex constants are zero 

Functions in the set                                           are orthonormal if 

A linearly independent set of functions F is complete if every function f(x) in the space
can be written as
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the set complete and
orthonormal

can be chosen as basis functions (or 
basis vectors) to span the function 
space and  basis for a Hilbert space

Then we can write each function to form

where the components of the vector can be find as follow:

The projection of the function on the ith axis produces the inner product 
between the two complex functions
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The closure relation ensures completeness of the basis set and vice versa

The bra for functions can be written in terms of an operator as

The Continuous Basis Set of Functions

orthonormality inner product F has an integral expansion
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The Sine Basis Set

Hilbert space can be expanded every 2L

The expansion coefficients are found by
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The Cosine Basis Set
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interval (-L, L)

orthonormality relation

The Fourier Series Basis Set

The wave is required to repeat itself every length L instead of 2L given above.

For three dimensions
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The Fourier Transform

inner product

The closure relation
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