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e Basic Properties of Lasers

The “brightness,” defined as the amount of output power per
unit frequency, determines the spectral purity of the source.
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FIGURE 1.4.7
Total energy of two atoms as a function of their separation distance.
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Intuitive Origin of Bands
(s) (si) (s)
(si) Si (i) (s ".
FIGURE 1.5.1 FIGURE 1:3:2

% . S Cartoon representation of transition from VB to CB.
Cartoon representation of silicon crystal at 0 K.
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The total energy of a conduction electron can be written as

E=PE +KE = E, + m,v"

p=mu

VB
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A semiconductor at zero degrees Kelvin with an GaAs has a light LH and heavy HH hole valence
indirect bandgap. band.
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Introduction to Band Edge Diagrams
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The rate equations describe how the gain, pump, feedback, and output
couplermechanisms affect the carrier and photon concentration in a device.
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The photon rate equation describes the effects of the output coupler

and feedback mechanism through a relaxation term incorporating the cavity
lifetime.
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Introduction to the
Rate Equations
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Flg. 6.12 An illustration of carrier recombination giving spontaneous emission of light in
a p—n junction diode.
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Density of photons (the number of photons $3L9 9590 1 ol 5 51 gSlad
per cm3), ]"'II
the density of electrons f 3
ni#/ em™)
pump-current number density ¥ (#carriers/s/cm’).

A second set of equations uses variables describing the optical power P (W) and current | (A).

+ SEVERAL SETS of PRRAMETERS _ |
= #E‘m’bﬂ__s | P: WATTS e Electric F;t,l(t
em® |

: = corrents
n=Emt 571 q= chage )\ T T
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Basic principle: Rapid change of state of an electron
Must go from high energy state to lower energy state
Scatterin
Loss of energy must appear somewhere f ’

Emitted in form of light «I I»

Lattice vibrations "

Electron can be bound to a particular atom or molecule or be free (part
of electron “gas”), as in most conductors

Two types of emission of light
Spontaneous
Stimulated

27
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Light production: spontaneous

Normal case

Electron in high energy state is unstable
Spontaneously returns to lower state
Occurs in a few picoseconds
Photon emitted in process
Direction, phase random

Energy of photon determined by transition
undergone by electron

28
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Light production: stimulated

Electron in high energy metastable state
Can remain there for a “long” time (¥microseconds)
Can fall back spontaneously, or be “stimulated” to
emit its energy by another photon

Incident photon must have correct energy

Newly emitted photon will have same wavelength, phase,
and direction as incident (stimulating) photon

29
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The Simplest Rate Equations
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°’;m ’ The Pump Term and the Internal

Quantum Efficiency

The number of electron—hole pairs that contribute to the photon emission process
in each unit of volume (cm3) of the active region in each second can be related to

the bias current | by

represents the

Internal Quantum Efficiency fraction of terminal
x current | that
. I generates carriers in

the active region

where # represent the “pump-current number density,

TF !' I »provides the actual current absorbed in the active region
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Pumping (whether optical or electrical)
initiates laser action when the carrier
population reaches the “threshold”
density (to be discussed later).

Without carrier recombination, the
pump would continuously increase the
carrier population according to

dn/dt = ¢ (recall 7 __p}.
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dy Stimulated \  ( Stimulated | (Optical Fraction of
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dn
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radiative

produces photons usually as spontaneous emission
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occurs primarily through phonon processes by material with indirect bandgap

ch
Fhonon

The result is h eat 'f\[\l

FPhaoton
WO [ AR =0
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< Main process in the Laser
Monomolecular (nonradiative) dn — n , B
At - T = —An I\monov = AnV
— bimolecular (radiative)
RspV = Bn*V
produces spontaneous emission
Auger recombination (nonradiative)

\

occurs when carriers transfer their energy to other carriers, which
interact with phonons to return to an equilibrium condition

Auger recombination is important for lasers (such as InGaAsP) with emission
wavelengths larger than 1 mm (small bandgap)

RaugV = C1’V

41

By: Dr. Jabbari



Optoelectronic 2

3T olRists
oAt

T, . 2 3
Rr — Rradi,alive + Rnnnradialive = An + B + Cn

l:A+Brf+C’112

Le

Spontaneous Emission Term

Of those photons that enter the waveguide, a
fraction of them have exactly the right
frequency to match that of the lasing mode

Stim

/ Spont

L’?}. R sp — L‘?ﬁ ﬁBHE 840 865

Wavelength (nm)

Emission rate
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All of the optical losses

contribute to an overall

relaxation time T
¥

called the cavity lifetime

d*'l L‘I’fn*ll
v pY
L dt T,

D

(t) = 7, exp (— -

t

T
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The Optical Loss Term

g A
<—I<—>OOOO<—>I_>
< N

which shows
that the initial
photon density
decays
exponentially
as the carriers
are lost

Absorption and Gain

o= T:_,_.[f'i-’g
1

— = QU
T, 3

Ug represents the group velnmty of the wave.
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as distributed along the length of the cavity

a partial differential equation with boundary conditions at the mirrors must be solved

\ /
1 <—I - OOO O =-— I—>
- I .
result » — = Vet = L—gLn(l/R)
Tin ) L / \

both mirrors have the same power reflectivity R (0.34 for GaAs).

The loss per mirror must be » o,/ 2.

reciprocal of the cavity lifetime becomes _ +

= Vgl = Ug(Uint + )
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Stimulated Emission—Absorption and Gain

e —

Temporal Gain

Single Pass Gain
types of gain
Material Gain

Material Transparency

~—

Introduction to the Energy Dependence of Gain

Temporal Gain

The CB electrons and VB holes produce “gain” in the sense that incident photons with the
proper wavelength can stimulate carrier recombination and thereby produce more photons
with the same characteristics as the incident ones.

45
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The word “stimulated” means that a photon must be incident on the material before
either stimulated emission or absorption can proceed

dy
I\SUmV = V T Sl |

stim

L-!Ln
Hu‘.lim V — V I_” — V}?f}'

dy 'u’

2 "1
fl"'h_%lim —_— = &Y = 1 %¢)

":-H stim
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Single Pass Gain
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Material Gain
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Number excited
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Material gain
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Gain

Introduction to the Energy Dependence of Gain
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P—I or [ -1 curves

Photon number density y

Jthr
Pump-current number density y

Photon Density versus Pump-Current Number Density

dn |

= —0,801) 7+ J — B

7 i 7 .2
o= +Toe g(n)y — I——{— BEn
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0= —veg(n)y+ 7 — Bn®

0 = +Tv.g(n)y — Y + BBn?
T,

Below Lasing Threshold

The phrase “below lasing threshold” implies that the laser has insufficient gain to
support oscillation

g a2
rf {Erflhr' Sl el 3D /I = ﬁI}'BH

g=0 Bn? = g

:'J — ﬁt}'rﬁ?
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Pump Pump

Bucket Bucket

Water

Slot line
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We have:
= pr..J e
h{“ — (ﬁ‘[rf) ) v, yUglly
P, = yUglm ’
J*»a
Next life time is:
1 1 1
= + = Vgl + int)
T T Tint
: nil he ni e ay
£ P, = yUgllyy = ﬁ . |
. f{r'V Mo f?,r'r hp Oty + Clipt
i

Pump-current number density y
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Power versus Voltage
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Optoelectronic 2
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Some Comments on Gain

Qinr = §(yye) = So(Mehr — 110)-

Ng Ny,  Number excited
atoms
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Relations for Cavity Lifetime, Reflectances and Internal
Loss
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Relation between P1 and P2 with only material gain and internal loss
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internal losses

E_‘F
N N . 8
‘E_ — Uglint + Uglfy = Uglint + ELH

1
1 1
(R'I RE)» 'C_ = —— = UgUint

Tint

the cavity lifetime

Bos D Jabbari No reflection facet a__,
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e

o 3T olsiatd
oAt
dy dy ) dy
o — L,?EE = UpQ) — YUglint OF For = g7 — Yint = &net’

where the net gain Snet = & — Wint

2

d
S h — = J —
owehave ——= gnetl — P(z) =P, EKF’(SHE)

from z=0 to z= L.
—_—
74 PoegnL
R; ll — R,R,P,e?on" Ry
R,P e29nt R2PoegnL
-
Z=0 Z=L

)

;

60

By: Dr. Jabbari



Optoelectronic 2

3T olRists
oAt

For steady state the initial power Po must be the same as the final power

P, = R{R>P, Exp(ZgﬂL)

—LLn !
Snet =57 N RR,

which says that the gain must equal the loss at steady state.
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== .Some BASIC FACTS Aboul Gai

ot @

n, T

n,= h.ms'pm-e_m:ﬁ dens, ty

@

» Recnll T~€3Lbi 9= m&TEf’Iﬂ:/ Gn(j
=0 > Y=7, AZT Tner™ 47 nt
TRAVIS’DG.R&\'[C DTS c-:} mn,
L photon 10”7 — ?lw-‘ro-w'w’f'
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Lo L,m.e_,qr,z)e %-—?('n\ 193 ﬁafor‘ gKPH'M{Mj,

Abo%f;na L
@;*” gg(ﬂ-fv‘dj

B 'n_(’na-"? ?(O —

" SR, —> TS0 —
5 —n:no__*, CB_:O —
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y=edty < v, ABSerp
3’: esLYa > 70 60’;"\
¥=To  TRAnsPanency
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E_‘_ Modulation Bandwidth
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3T olRists T e -t
1+ It
| I | + ( :’ PD = |E X P{:t) o (‘L)
f[f) — [ @'t T il I Laser I e

Modulation

Carrier w

Photons

Power P, —

Current | —»

By: Dr. Jabbari

P(w)
()

Response R =

Wrag
Ang. freq. @ —»
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Small Signal Analysis

Optoelectronic 2

o 3T olRists
o ! To demonstrate the equation for resonance
"ba r’ # ““average’
Cdn : A
E — _E’ggﬂ(” — M)y + ] ——
Rate and ' Ty
Wave —
Equation W vl
i f f i
— =+ 01 — 11,)y ——
o dt 33 T,
' _— X Il — 1 / T |!-£r..lf
n=n+ne y=3+4+ye" ['=]+]e

By: Dr. Jabbari

For steady-state
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" ﬂz_ﬂggﬂ(ﬂ_ﬂﬂ)}"FI——
i & fﬂ
ﬁ _—
3T olRists
oA B
- - 7
0= +T‘ﬂggﬂ(ﬂ — 11,y) 7 -
; 1ok 2 ity (= it = 1 b W o
ion e = —vg(§ + gone™) (J+ye™) +] ——+ ] ——e
Tn Tn
—
- Ei!'m! =
E Y i - G i ) b
jy e = T0g(8 + gon &) (7 + 7€) ——— — —
_ ‘ }I }I
» y ] = s 4 . . ﬂ i
ion € = —vggne'™ § +gye” + goyne''] +Je* ——e
Tn
: g ; : e Eiwf
TEE.J'}F plot — rﬂg[?gﬂﬂ plot "i"g? alo! + Qonty Elzmt] 4
%
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oAt

Drop the second-order nonlinear terms such as g,, n?; this procedure also removes
terms such as e(2iw). Then cancel the exponentials e(iw) from both sides

, * _ s H

N = —UVeQoNy — VeV + | — oy

H

. - - 7
iy = lMvggony + IN'vggy — ~

— B " '1 ;
Ue2y = | — | UeQo? +’E_n + 1w | 1

1 -
[Mvggoyn = (I— — I'vgg + r.m) y
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3T olRists
oAt
i rf?ggair;f
o . I | 1 o
Fvégngy+ UeQoV ~1—I—+3m T—v['ﬂgg+am
n "
Fl_(l s 1)
define = 1t \1r, ngﬂ—uggwﬂ—;

T
g e 1)\ /1 _
w; = I'Ue8,87 + | Ug8o¥ + W L ['veg

n Ty

e —

obtain the transfer function

By: Dr. Jabbari
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o 3T olRists
oy Defined the response function

R =

/

o) 7= D
() /)

peak of the ;R
response d_w] =0 1 < resonant frequency
function

1
T— == z"g(a'int + )

Above threshold

21

1 _ L |
; = rzfgg — I‘vgg;.' =

IR

" 1 1
Wres = \/g(az?é}' I:Olinl T L Ln (1_\,)]
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* Beter Mirrors (owesrs B.w, |

AMLnLm AL BW

’ “ofzﬂu La__-kf\v ane. Slower
Lenlly &M%m@nﬂ fo é:f
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Maxwell’s Eﬂuations and Related Quantities

3T olRists
oAt -
- d# —
?}is-:—ﬁ VY = piree
ORI 5
N ¥=¢§ Fi—? V- -%8=0

current density 1- find a complex

electric field wave vector kn to describe gain/absorption
and refractive index

displacement field
'SP ! 2-find the Poynting

’ .
Maxwell’s | yector for electromagnetic power flow

magnetic field equations
3-develop scattering and linear systems theory
Magnetic induction for optical devices
4-develop the theory of optical waveguides
Charge

UV IO M
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3T olRists
oAt

&(F,t) = E(7)el

35S Judwi Ul ;1 Jiams Hobou ) Ul Ulei (w0 aS Cuwl USo g U ©
F=XXF 22— ayl s,

5 = cok + 7
XX PGt
@ = (r,1)
= E @ © The polarization denotes the total dipole moment per
unit volume at the position r at time t. The polarization
E— and the dipole moment are related by B _ #dipoles ;
~ vol
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oK Linear relation between the induced polarization and the electric field

—

— .E‘,,—J.r-_'f'-':ﬂ -+ :f’ a2 fe
P = &, x(w)& b=&§

l

permittivity of free space

g =¢&,(1 4 )

(complex) susceptibility

Gauss’ law

?’:‘5" Ffr&e_}'f‘v F+v «’d_lﬂfree

the “+” indicates that energy stored as polarization decreases the energy stored in

the field within a dielectric (since the sum of the two terms equals the cONStant free
charge).
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oy ™

Optoelectronic 2

. D:?oles e-m'\‘i'a/«.r.l. ﬂ'ésaf'L) E-M WAVE <

Envvar ey A_Lg.pf?pzt;:n

® y
“} )Wﬂ VAR My
@ @ JRMfl.rti

¢ EM WAVE Merocts wiHe d‘cFole_s

By: Dr. Jabbari

Toadeyx of Refﬂ'c_s}@n
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A, relation between the magnetic induction and the magnetic field

3T olRists L
o magnetic fields

permeability of free space

&

Nen mﬁ&ﬂt‘!‘l:c. Mjﬂ.u?-\;_
M ;| Vooso La_n.%e, v}_{.’ Lc:n. Y,
bb)i__,.o)bj 9.0 Small M. 3: ﬁ.?L
v@:"uaw go.ﬂtj&- ;é)- ,{L‘;;/ .
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b= P

o 3T olRists
o ! =0 for steady state conditions
VxH=F§+ H_ Vx # =3 —=>|VXB—uNVNx .l =p,f

current increases, both the magnetization and the magnetic induction also increase

Outside the magnetic material

—

B = (i, A

conductivity of the material

Ohm’s law.

By: Dr. Jabbari ’ "
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Ohm’s law.

7= Can.c]ud'wc ;j

P= Rests ru
= ./% %

alummf*

arg o
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Relation between Electric and Magnetic Fields in Vacuu

The vector (‘" X F.'rf
propagation direction of the wave

=
4’ wave vector
K, v
=

_—

o

& (3, f’) - Eﬂ EEJ!-.',:.:—E&JE X

We start by plane-wave: —

h};(x [E, f') i Hg Efi'ﬂ:—ﬂ-{r.lf j;"'r

PaiS 50 £9u JouuSlo w¥sLeo ;1 (0S5l oslwl U

- Y
VXA =F+—
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X
- d
V X # = E
My

By: Dr. Jabbari

-

EE@:ED-:;&+§"

,_r-’_-'}“' — 0 i 10 33T slad &S (sl 9

D

- a6
Vx # =eg,—
ot
Y z
d d - (3.#3 Ay - (3.}#"’2 oA x) -
oy SRl K — 35 3 r ! o e
ay 0z iy 0z ax 0z
Hy A

Only for y-component, we can simplify the relation:

Optoelectronic 2

(

dx ay

oA, 3”)

81




3T olRists
oAt

e Hr# 5 Y - T
==y ¥ = yyk H et it
oz
The time derivative
d - R
ggﬂcf(zf }) = —iwe,XE, e*e* 1!

e,
Substituting ‘ koHo = werky = H, = k, Eo

By = noH,

¢ = (& No)—‘l

By: Dr. Jabbari

Optoelectronic 2
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Relation between Electric and Magnetic Fields in Dielectrics

3T olRists
oy By the same way:
e E'E EE.‘E—EMEE W — HI Eeﬁz—ﬂwf i;}
231 2
k = o .l n = ko ——— real index of refraction
H

in the medium

in vacuum
Vx # =25 =2 (58 + P) = (60 + £0x)
o o Y L] : _E.Eif' =0 2 0 X ©

£ =€o(1 + x)

.t

5. 8 pa
V x # = —(ﬁ)
b4 Hﬁ" & ;

By: Dr. Jabbari
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manner as above to obtain

—ixkH; e* " — _iYweE, e

- E
= ﬁcﬂ

neglects the magnetization

M= ‘ B-[ — W& E-[
kon

. CLL &
B, = o

|
m

By: Dr. Jabbari

_ c(nfc)? E, — " E,

Optoelectronic 2

The cross product and derivative can be performed in the same

itkz —iewt
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The Wave Equation

3T olRists
oK __Derivation of the Wave Equation
. 3B
Vxé=——
ot
= - 3
e =
o a = | -
VXVXE==-—=VXH=—=—Vx(u, ¥
Y o (1o )
}:O‘Zﬁ
PE TR\ Tt )T Ty e T TR

By: Dr. Jabbari
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&

- p:ﬂﬁ (EGEE"}’ -+ ED}(%)
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oAt

& P -
‘ v v S BT (f)

ot ot

AxBxC=B(A-C)—C(A-B) . ~ _
VXxVx&=VV-& — V&

. & P&
V€ = j1,0—
ot o Y
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PN The Complex Wave Vector

3T olRists s : :
o We start by substituting a plane wave into the wave equation

electric field consists of a single traveling plane wave

& = ek, exp(ik,z — iwt)

k. =k, + ik; = Re(k.) + i Im(k.)

blizo zgo 1991 b bx! 50 mg) 43 ) Jd LI (510 45 15 (5 o o 51
woT ddlgd Sy 52 ) A padd Pl

—F(‘E +ipeow + o (1 + x) =0

2
( . .
kf_ = F(I + x) +ip0m = kg(l + ¥)+ i, om

By: Dr. Jabbari -
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oy ™
k2 o M Ow | i O
K=K+ x) +issum0m=k(1+ x) + ik —— = k(1 + x) + ik
ku w/C & pled

E:kg[1+x+i

L

o
£, (D)

1/2
k =k [1 + Re(x) + rf(lm(;{) +2 )]

£
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Definitions for Complex Index, Permittivity and Wave Vecto

-3

3T olRists
oy complex refractive index and the complex permittivity

He = M, +11; k k .
.= &+ 1& S

ﬂf’: =1+ Re(y) + i(lm(;{) + i)

ot

O g (0 Al gd Wl (9 g (> uowd ¥ goro

2

n“=gfe, or n=./efe
£ & . a
Li = 1+ Re(y)+ :.(lm(x) + —)
£, E, E
i—;'z I + Rel(x) j—;:lm(}{)+ :r

By: Dr. Jabbari ; v
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b= P

o 3T olRists

oy So real permittivity and real refractive index are related to
the real part of the susceptibility.
imaginary of the permittivity is related to both the
imaginary part of the susceptibility and the conductivity

Conductivity ‘ absorbs part of the electromagnetic wave

ke = kot = kon + rgikm-r — r"%”\

absorption and the gain

another definition

The Meaning of k_
the imaginary part of the wave vector gives the exponential decay or growth (absorption or
gain, respectively) of the traveling wave

I{e(kf) = kO”P' >k0 - )\medium < A'\v'élCLlLll’ﬂ /—\/\/

E = E, exp(ik.z) = E, expli(kon + ia/2)z)] = E, exp(—za/2) explik,nz] XP(——Z)

The power has the form of P~ E*E ~exp(—az) =lc=::s;p{+g:z) \
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Approximate Expression for the Wave Vector

o 3T olRists
oA

For simplicity

1/2 , 1/2
k.= kone = ko[l + Re(x) + i(Im(x) +— )] — k. =kone = kon,,[l +z_2 (Im(x) +-2 )]
800) ”’ 80(1)

n? =1+ Re(x)
V1i+ty=1l-— Y
: 2 Kk, o
— ke = kone = kony +1 (Im( x) + )
2n, E ol

ke = ko1t + i ;z/

very a == (1mG+-Z) = g,
o My Eq0
important

result 0¥ = —Ln

By: Dr. Jabbari
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Approximate Expressions for the Refractive Index and Permittivity

3T olRists

ot Ec g &
= = \X—+1—
Ep £ Ep

imaginary part of € is small ’

1/2 e .
- fe, &i/&s . Ei/&o Ei[ & Ei/€o
= [—| 141 oo 1 = 1 = :
1 E:al: +IE‘rng] I’.I';-I: +12£‘”!Eﬂ] nrl: =g 2”%] Hy 1+ 1 o

n=n,+1in;

a
6 = &, Im(x) +—

By: Dr. Jabbari
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The Susceptibility and the Pump

3T oKt .
°“’;:m‘ * | The real part of the susceptibility leads to the index of refraction while the
imaginary part leads to absorption or gain as can be seen from the main two
results
: 1/2
n=mn,=[1+ Re(x)]"

k, | a
o =— (ll’ﬂ(}{) + E‘giﬂ) = —&n

",

The pump mechanism adds energy to the laser

It is the susceptibility that changes with pumping very similar to polarization ' = &,xE

Adding carriers through the pump mechanism increases the number of possible dipoles

X = XoT Xp

=
By: Dr. Jabbari Q
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o 3T olRists
oAt

k7 ‘0
o =#(lm(xl,) + Im(x,) + ‘G ) _k o

ko
= —Im(x, VY=o, —¢ 5
j [

related to the term containing the conductivity

related to the term containing the susceptibility

Next 1
n =, = [1+ Re(xy)+ Re(xp)]"
Define the background refractive index 1y = /1 + Re(xp).
g Re(xp)1"? Re(x Re(x,
w 1, 2m;, 2n,

We see that the refractive index is smaller than the background refractive index when
the real part of the pump susceptibility is negative.

By: Dr. Jabbari the pump susceptibility changes the index of refraction 94
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3T olRists

“Mathematical
Foundations

Linear algebra is the natural mathematical language of quantum mechanics

Hilbert spaces for vectors and operators

The Dirac notation

A Hermitian (self-adjoint) operator produces a basis set within a Hilbert space

Observables such as energy or momentum

95
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af Vector and Hilbert Spaces P
T e

e ——————————
3T olRists

o ! In Q.M.:

Act of observing represented by operators

Particle or system represented by vectors

Exam: Y ( wave funtion) or | > (Ket) represents particle moving along z axis unlike
Movement P . Let P be an operator that measures momentum

'Fa MM-Q.*’G

‘P "’P) — '13 l?) M%S\H‘tlﬂw

Exam: Alternate statement (Average momentum)

A\ _ Osasane A,
et momagdvm: <'H?\‘P> =PI =P
A9 (g Oala il bod gund SR sl ol Bagi (Observable) yiad oaliling ( Quantities) cuwesd

5'“’3'3'-'7/ MM:"‘; Anﬂut.mz
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o 3T olidtd
o Nt Basic problem in QM. is

Wave functions live in Hilbert space
Hilbert space = vector space + Inner product

There exists basis vectors

e T B 155
!{> iﬁ‘ -y
Fuﬂd"wll- JReTLlan

V= i,‘ 'JBL ¥

Usually basis set g "ﬂ- tad f‘l’,_) o ( ﬁ)} chosen to be eigen vectors
of observable likc

$  Hamlion & 1D = 8\
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P
T e,

3T olRists
oy ™
= Componcnd = probalillly mp kel

M = L) =LY o polafll
PAMLIG , Mtnj Mua e

u.nf-ﬂ. LoAVE 'runchan

Basic State ¥
préyz B =¢k- Jan ety
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i &

“}:ﬁ ’ Other type of operator : unitary
converts one basis Set into another o
\117 e
~ "\
¥ ‘:D&FIUCN (e PEAGCNQF) gcfrsro(im%em = (>
%Udléﬂ,
t}‘f/ Lf).—.ii%i  4ime Je.laerui[&k{ 7 = 7k ?a-f";
A . .
)"F= Etf; : dume MJ'EPQAJ.-.-:N.\‘ aNeS i |
I basts Vectors XW¥= EY,
¢ Wl ueed fe RE*JI‘QHJ T*F'L‘w 'D*F’ttﬂl‘-{t,c.ﬂ
f%uu.:"l;n,-s
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N

Optoelectronic 2

;3T olKaits + DIsScuss Mru{ou 'Zﬁgpﬁj ﬁﬂ_c{ -

ferme Gelden Rufe

_{t—ley

SN iy W

i

VB
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i: — i
P=r T2

3T olRists
oAt

1+ Operators Also form a vector

space (and Hilbert Space)
JOperators or Wae functions can

carry the dynamics of system
J-Representations Schrodinger
,Heisenberg ,Interaction

101
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Definition of Vector Space
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o 3T olidtd — .
oA set F(real or complex )with operator + f, fl , f2 In F

vector space consists —

Scalar multiplication (SM) over the field of numbers N
— o, B,vyinN

Clﬂﬂur{'i\ﬁ +f21s in F and «f is in F

Associative: (Fr+f2) +fa=f1+ (fatfa)

Commutative: fitfo=fat+fi

Lero: There exists a zero vector (@ such that O+f=f

Negativ&r-}: For every f in F, there exists (—f) in F such that f4+(—f) =0
SM Associative: (f)f =w(pf)

SM Distributive: alfi + L) =ofi + ofz
SM Distributive: (¢ + B)f = af + Bf
SM Unit: If=f

102
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——————

ol If F represents the set of real functions but the number field consists

of complex numbers

Objects such as c, f(x) (where ¢, is complex) cannot be in the original vector
space because the function g(x)=c1f(x) has complex values.

closure cannot be
satisfied

cannot be vector space

Inner Product, Norm, and Metric

An inner product (®*/*) in a (real or complex) vector space F is a scalar valued function that

maps fFx F-— C (where Cis the set of complex numbers) with the properties

1. (flg) = (g|f)" with f, ¢ elements in F and where “*” denotes complex conjugate.

2. {of +Bglh)y=a*(f|h)+ p*(g|h) and (h | af + Bg) =ath | f) + Bih | g wheref, g, h
are elements of F and «, g are elements in the complex number field %.

3. {f|f) =0 tor all vectors f. The inner product can be zero (f | f) =0 if and only
if f=0 (except at possibly a few points for functions).
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o Hu! The norm or “length” of a vector fis defined tobe |f|| = (f | /)12

A metric d( f, g) is a relation between two elements f and g of a set F such that

1. d(f, g)=0and d =0 only when f= g (except at possibly a few points for piecewise
continuous functions C,la,b]). Recall that two functions are equal only when
f(x) =g(x) for all “x” in the domain of definition.

2. d(f, 9 =d(g, f).
3. d(f, @) <d(f, h) +d(h, g) where I is any third element of F.

The metric measures the distance between two elements of the space

d(f,9)=(f-g|f-g'"

104
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3T olRists
go)(w‘ =+ ) r'-: -
MT=XYT WY o ontsl stas s
P2 = X2X + Y2 lf
Inner product (i |.72) =71-72 = 0122 + )12
Norm i1 = Fl | FI}IE= (x7 ‘|'?:'%Jlfq ,
Metric d(h,72) = |7 = 12| = [(n = 72) - —Fﬂ]m= \'“II —x2)’ + (1 — 2

inner product for functions

Inner product g 1,2 . 12
Norm Ifol = (112 = [ 2 ax fayf)] = [ 2 dx ifoP ]
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1537 olKis!
’ ;:m‘ ’ Example: Find the length of f(x)=x for x €[-1, 1]

1/2 1/2 1/2

A =110 [ [ ews] <[ [ aews] <[ [ ] =

| 2

Kets, Bras, and Brackets for Euclidean Space

gt

3D euclidean vector: [y 1, z)

o ll) 1o02) Zo|3) ey <> |1)

Bxample: 3 — 3% — 4i + 102
o) = 3|1) — 4]2) + 10/3)
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3T olRists
oy We define a ““bra” < | to be a projection operator
(10 =3 2)
- V)
10) = 3|1) — 4]2) + 10|3) 2lv=-4 ,
(315 = 10. (1
1

Combination of projection operators and vectors as

. nlceula Kaouu
(Wl = We

(1o = (1]o)

“bra” + “ket” gives the ““braket”

(w]v) = ()7 =

|'} {' | —to be more complicated compound objects

By: Dr. Jabbari

.L__‘F

Avy=3 |1}
Projection of v = 3% + 5y onto 1), [2).

inner product
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Exwple o 35 e¢d_s3

A =al (v = £ (3%ead-53 ) = 5
MHd= il Ivd = &l 33104412 -513>F
=3 <11 +34(25-5<13> =3

+ mentien Dunl Vector 5Pa.a€. (e Later)
- {wl = Linear Qpem_{-or mips V- ¢

W2 ey = T iy
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* Optoelectronic 2
A, Basis, Completeness, and Closure for Euclidean Space

1,7 olKia!
% °m‘ ° basis set must be orthonormal and complete
<0
1 m=n
{IHIH} = Sm,.'z —
0 m#£n
Kronecker delta function
{ = — - — '6‘51‘
< {l> g = <I(3>_ i i _<ml,n> m#%
A linear combination of ““N”” orthonormal vectors B = {|1),]2)., ....|N)} has the form

N
)= » Cii)
=

can be complex numbers
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oS! closure (i.e., completeness) relation

(m | v) = (m| ZH:C-'@H) =ics{m | 1) = iciﬁi, m = Cp
= i1

1=1

Ci=(i|v)

[v) = Y0, Gili) = Yi, [{i | o)1)

|v>—Z|z (i|v) or |v>—(Z|z z| [0) » le

=1

Example 4.2.1
The completeness relation for %° using (w| = - is

1=1)(1|+ 22|+ 13)(3] so 1=%% -+jij-+2%

Note that the unit vectors are written next to each other without an operator between
them.

By: Dr. Jabbari
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. Optoelectronic 2
- The Euclidean Dual Vector Space

U—tslity s

3T olRists : :
oMt Bra projects an arbitrary vector onto the vector

linear operator (! maps a vector space V into the complex numbers # (i.c., (w]: V — %).

Euclidean vector ,the corresponding bra is the operator v} = {v] = T3

(| < ) oras [w)7= (w| )
+ dual vector space V*

Example 4.2.2 V= {v)}and V* = {(w]}

Find the vector dual to |2) = 7.

The dual vector is (2| = §- which is an operator that projects an arbitrary vector v onto .

We can explicitly represent the result of the projection as the y-component of :

2v) =9 -0=1,

Example 4.2.3
Some relations can be demonstrated for © = |[v) = a|1) + b|2) where { |1), |2) } spans R?

1. (v] = [o)T=[a]1) + b]2)] = [I1)Ta™ + [2)"b"] = a*(1] + b*(2]

2. (0| 1) =[a*(1| +b*(2]]|]1) =a* and (1 |0) = (1|[a|1) +b|2)] =a

3. (1|vy)=a=@@@")" =(v|1)* Notethat @ | 1) ={(1]|v)=(v]| 1" 111
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’@m' The adjoin reverses the order of operators

(v|L1La|w) ™= (w|L; LT |v)

Exam: Assume {“} s = ]*2_3}

5 3 gl g 3 3 3 3
12)°= w1 v) = (Z z)ili)) (Z z.’,-|j)) Z (i|v} Zv,|] Z (ilvvjj) = Z v}

j=1 i=1 J=1 i,j=1 i, =1

unit vectors

3

3 3
- - e 12
lol*= ) " vfvidij= Y vivi=)_|uvil
i=1 i=1

1, )=1
the magnitude of the complex number
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A Hilbert space consists of a vector space of functions
with a defined inner product

Hilbert Space of Functions with Discrete Basis Vectors

Functions inaset F={¢o.¢1.¢2. ... ¢} are linearly independent if for complex constants
n
D> cigi(0) =0
=0
can only be true when all of the complex constants are zero ci=0,

Functions in the set F = {¢. $1. ¢, ....d,) are orthonormal if  (®il &j) =&

A linearly independent set of functions F is complete if every function f(x) in the space
can be written as

fx) = E cgi(x) or |[f)= E Cildi)
113
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o the set (¢, { complete and can be chosen as basis functions (or

orthonormal basis vectors) to span the function
space and basis for a Hilbert space

-

tUgo)lén). ...} == {0),[1), ...}

o0

Then we can write each function to form |f) = Z cili)
1=0

where the components of the vector can be find as follow:

1A=t [ =i Dl =D _alili) =) _cdi=c
i=0 i=0 i=0

The projection of the function on the it" axis produces the inner product
between the two complex functions

b
.1 f)= [ dxarre

By: Dr. Jabbari
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b= P

o 3T olRists

o Nt |f)=;c,-|i) - |f)=i"|’>=i |;)—Z|z) {i|f)= (Z (il)|f)

The closure relation ensures completeness of the basis set and vice versa

The bra for functions can be written in terms of an operator as

(,f| = / dx f*(x)o

The Continuous Basis Set of Functions

(¢x | ¢x) = 8(k — K) (f]g)= / dx f*(x)g(x) f} = f b dk cildx)

orthonormality F has an integral expansion

inner product
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f(x)= [ dkcg ¢ulx)
i1
|#2)
) :lf) |P4.9)
|
| Cag-———r )
| C4
T I
l// P4 i
Iy |
[« T . ¥ |
y Cay |pa.1)
|¢3) FIGURE 4.3.2
FIGURE 4.3.1 A function projected onto two of the many basis

. . . . vectors.
The function f projected onto the basis set of functions.
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Example 4.3.1

Is the set {1, x} orthonormal on the interval [—1, 1]?
Note that the “1” and “x” represent functions and not coordinates. Therefore, define
functions f=1 and g=ux. These functions are orthogonal on the interval as can be seen

: 1
g) = / dx f*g = / dx1-x=0
—1 O |

Neither function is normalized (unit length) since

(f

.l |
B 1 5
IAP={f | f)= f_ dr=2 and [gf’=(s]g)= f_ =l

In general, any function /i(x) can be normalized by redefining it as i — h/|h|. An
orthonormal set can be formed by dividing each function by its length. The orthonormal

set 1s
L ﬁ \‘
ﬁ' 2 )
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- The Sine Basis Set
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Bi.= {\/%sin(lzz) n=1,23. } — {I/I,,(X)I n= 1*2*3"‘}
x e (0,L)

Hilbert space can be expanded every 2L

oz = = 2 " :

The expansion coefficients are found by

(% | f) == (lﬁ"rn| {Z Cin |1|"frr:)} = Z Con (Wﬂ | y'fm) = Cn

'

— =

; |
y il ( Pan) ‘ f(l.)> = 2 [ axfeosin()
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The Cosine Basis Set

3T olRists 1 > -
oAt B, = lﬁ,\[ZC()S(T'), ... forn= 1,2,3...} = {0, P1. ...}
P o0
‘f): E Con|Pn)
_ n=>0
2 HITX
0
J(A) = T-I- Z c”\/écos(T)
1| I e
co = (¢o | f)=<ﬁ|f(x)> =7, dx f(x)
2 2
nmwx nmwx
=P | f) = 7 COS\ —/ X)) =T dx f(x 7
cn = (¢n | f) <‘/;LO%( L) f(\)> \/ljfo Yf(\)coe( )

By: Dr. Jabbari
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The Fourier Series Basis Set

3T olRists ,
oMt interval (-L, L)

nirx

I exp IT) n=0, %1, :i:2...}

orthonormality relation

<ﬁ exp(i ”Zx)

f(x) = Z Exp (I %)

!’E——:ﬁ]

t

The coetticients D,, can be complex.

The wave is required to repeat itself every length L instead of 2L given above.

1 2nmx
B={—expli n=0, 1, £2 ...
[ﬁ p( L) }

For three dimensions

B= {%exp(ﬂ-\:-?)]
By: Dr. Jabbari V=LLJL, and ky =(@2mwm/Ly), k, = 2nn/Ly), k.= 2np/ Lz)1'20
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The Fourier Transform

3T olRists _
oMt | E_.!kx | ik
Jon o= VI
1|s< ) = ‘ ) S ) = (x| k) = ——exp (rikx)]
" Wz
_ —iKx ik oo ilk—K)x
inner product (K| k) = » dxE J_«/Z_rr fx o 3k — K)

The closure relation - f oy dk k|
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Summary of Results

Optoelectronic 2

Euclidean Functions-Discrete Functions-Continuous
Vectors Basis Basis
Basis ) : n=123. 0~ {x0.2...}  {In) = ua)it(x)} (k) = Iy dilx )|
n = Integer i = Integer k = Real

Projector (w| = w- (f| = [dxf(x) 0 (f| = [dx f*(x
Orthonormality — {m | n) =4, e | =8 (O | dy) = (k K}
Complete o) =Y culn) If)= X calit) If) = [ dk i Igw)

” x‘>=”;cnuntx) fi) = [ dv o gy(x)
Components = (1| o) Cn =ty | f) ce= (o | f)
[nner Product (1 | w) ZU w, (f | &) = [dx f*(x) g(x) (f | 8] = [dxf(x) glx)
Closure L |u | =1 [ dk |gy) (] = &

By: Dr. Jabbart
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§(x=x) =) 1 (x) uylx)
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